

A Data-Driven Car Recommender for US Dealerships

Data

Optimization Framework

Find alternative sets of options to keep total price below a threshold

$$
\begin{gathered}
\max \lambda_{1} \sum_{i=1}^{n} v_{i} x_{i}+\lambda_{2} \sum_{i=1}^{n} w_{i} x_{i}-\lambda_{3} \sum_{i=1}^{n} x_{i} \\
\text { s.t. } \\
\sum_{i=1}^{n} w_{i} x_{i} \leq W \\
\sum_{i=1}^{n} c_{i} x_{i}=1 \quad \sum_{i=1}^{n} t_{i} x_{i}=1 \sum_{i=1}^{n} r_{i} x_{i}=1 \\
x_{i} \leq x_{j} \forall(i, j) \in \zeta \\
x_{i}+x_{j} \leq 1 \quad \forall(i, j) \in \xi \\
x_{i}, c_{i}, t_{i}, r_{i} \in\{0,1\}
\end{gathered}
$$

Results

- Revenue is increased by 9% and sales happen $\mathbf{2 0 \%}$ faster
- $\mathbf{8 6 . 5 \%}$ of the models have lower days on lot and $\mathbf{6 1 . 5 \%}$ of the models have higher prices

Use Case: A California Dealer

- Revenue is increased by 30 million ($\mathbf{\sim 1 1 \%)}$
- Days on Lot decreased by 7 days (~20\%)

Implementation in Production
\checkmark Fully working, tuneable Recommendation System in Production
\checkmark Output integrated with current process $\xlongequal{\checkmark \text { Ability to evaluate performance according to business metrics }}$
\checkmark Extensive handover document to transfer ownership to BMW

Model 1	Configuration 1	Configuration 2	Configuration 3	Configuration 4
\% Recommended	50	25	15	10
Days on Lot	3	6	10	12
Option Prices	1000	1300	800	1150
Option 1	x			x
Option 2		x		
Option 3		x	x	x
..	\ldots	\ldots	\ldots	\ldots

