Connecting the Dots: Matching Existing Solutions to New Production Defects

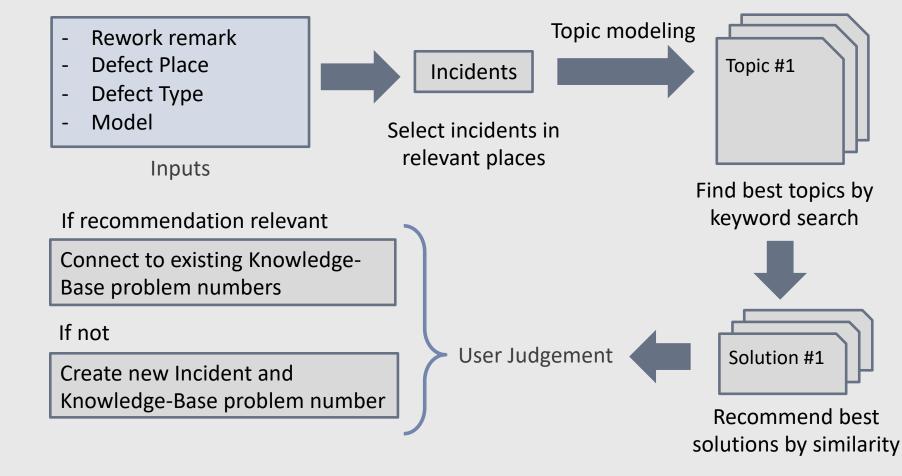
Problem

Defects occur frequently on the production line and quality engineers would have to address them on a daily basis. Valuable time are spent to fix these defects so similar defects are aggregated into the Knowledge-Base along with a common solution. However, this is a manual process that requires up to 24 hours per month of labor, and it is very prone to human error.

How can BMW Group increase efficiency in the Problem **Management Process?**

What's the most relevant solutions to a new defect?

Does the solution exist in the current Knowledge-Base?


GROUP MANAGEMENT **SLOAN SCHOOL**

Chloe Lee Team: **Daniel Cao Retsef Levi** Advisor: Sponsors: Maka Karalashvili Virendra Pathak

Solution

A recommendation tool that suggest existing solutions to new defects

Problem Management Process

The PMP system is used to manage defects and is consisted of the following three steps:

2. Analyze Incidents

1. Identify Defects

Production defects are reported plant-wise, along with a short remark describing the defect in German and/or English.

Similar incidents are assigned a unique Problem Number along with a detailed problem solution.

3. Solve Problems

Critical defects are further analyzed and elaborated into incident descriptions.

Data and Methods

Each step contains a respective dataset and we conducted analytical methods both on and across the three datasets.

Rework

- Over 4.3 million defect entries across different plants since 2019
- Structural features: defected vehicle parts and defect type
- Unstructured features: multilingual and succinct rework remarks
- Less than 0.05% entries are connected to a Problem Number

Setence Transformers

We utilized multilingual sentence transformers to generate embeddings of a new rework remark to understand the problem.

Incident

- Around 1.1 million incidents
- Over 80% incidents are connected to a Problem Number
- Contains more detailed multilingual description about the defect

Topic Modeling: Top2Vec

We clustered incidents by their topics.

- **1.** Obtain embeddings of incident description
- 2. Conduct dimensionality reduction using Uniform Manifold Approximation and Projection (UMAP)
- 3. Perform clustering using Hierarchical Density-Based Spatial Clustering of **Applications with Noise (HDBSCAN)**

Short Text Clustering: Movie Group Process

Large topics are further clustered using the Gibbs sampling algorithm for a Dirichlet Mixture Model (GSDMM).

Knowledge-Base

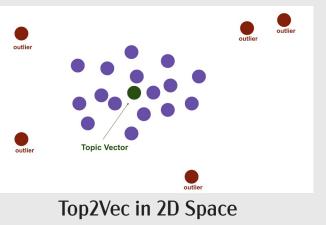
- ~891 thousands solutions (Problem Numbers)
- Detailed multilingual description of both defect and solution

Cosine Similarity

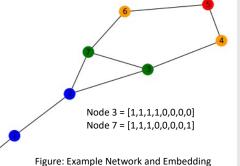
Problem Numbers are ranked based on cosine similarity of sentence embeddings of Rework remark and solution title to assess the relevancy between the defect and proposed solution.

Rouge Score

Rouge score measures overlap of n-gram between Rework remark and solution description.

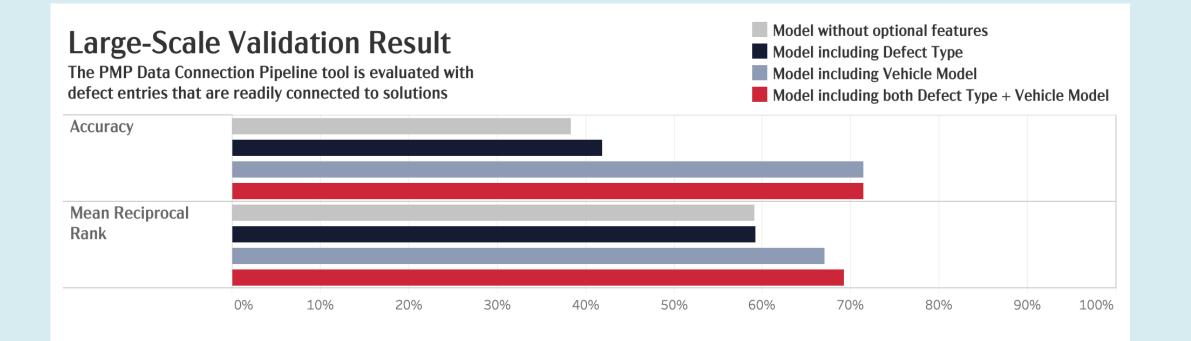

Optional Features:

- Vehicle Model
- Type of Defect


Keyword Extraction

Vehicle Parts Embeddings

Challenge: Overwhelming number of solutions to consider at once **Solution:** Segment incidents by their respective defected vehicle parts **Challenge:** Incident descriptions contain many irrelevant information **Solution:** Identify most important information by extracting keywords of each topic cluster


- Generate parent node vector for each defect place
- Condense embedding vector through Principal **Component Analysis (PCA)**
- Cluster defected vehicle parts by their embeddings and match incidents to their respective defect part cluster

- Yet Another Keyword Extractor (YAKE!) Collection-Independent Automatic Keyword Extractor
- Regular Expression of Option Codes and Severity Index
- Extracting Noun-Verb pair through part-of-speech (POS) tags

Objective: recommend all Problem Numbers in topic clusters that contain relevant keywords to the respective defect

Results and Impact

- The recommendation tool performs the best when it includes both Defect Type and Vehicle Model as additional inputs (accuracy: 71.43%, MRR: 69.23%)
- The defect solution recommendation tool relieves plant workers of cumbersome manual work and allows them to focus on roles that require more human expertise
- Machine learning also reduces human errors such as creating the same solution twice if they are unable to find the right solution among thousands of entries
- Improves efficiency by 900x while allowing flexibility in inputs to accommodate for user's domain knowledge

projected defects matched per day

£500X annual labor expense used more efficiently

quality engineers directly assisted