

Reprice with Confidence:

Overview

Dynamic Pricing with Robust Time-series Forecasting

BMW Group Team: Dr. Erik Pfeiffenberger Dr. Steffen Illig Faculty Advisor: Prof. Negin Golrezaei PhD Mentor: Jason Cheuk Nam Liang

Before we joined BMW Group, the "Advanced Analytics" team had a model to predict cars' demand elasticity with limited functionality; this model had moderate errors and could not capture seasonality. Our project goals are to improve this model and apply optimization to advise car prices across BMW headquarters' owned dealerships in Germany. Our approach has 4 steps.

The left histogram shows that most sales are around the average price; it is counterintuitive since there should be more sales at a lower price. However, this is because not all price ranges were offered to every customer. To un-bias this data, we used a cumulative sum of sales method with an assumption that customers are always willing to purchase the same cars at the lower price.

Important Key Features

production date.

Corporate KPI: This data is user-input KPI, used to set constraints for optimization. Currently, this includes sales target, and allowable price swing.

of each car model e.g. fuel type, body style,

since there are around 1,000 model codes, the average monthly sales of each model code are low, leading to noisy features. To solve this problem, we assumed that the elasticity of the model code is equivalent to that of its corresponding development code (the assumption was accepted by BMW, at 17% error). Therefore, the prediction model will predict at the development code level.

Methodology

Elasticity Estimation

We aim to estimate the relationship between the sales and the discount of each car model. However, since each model has different scales of sales, we focus on the sale uplift instead. Tree-based models are selected as they can well capture the non-linearity in the data. Our models' output can estimate the elasticity and accurately separate the "month trend effect" and "discount effect" to better understand the impact of discounts on sales.

Profit Optimization

The profit optimization is framed as a quadratic programming problem that can be timely solved using open-source solvers (SCS).

Objective: Maximize Total Profit

Discount Change

Constraint 1: no abrupt change in price

 $0.9 \leq discount uplift_i(p_{i,opt}) \leq 1.1$

Results

Testing Period Model R² MAE SMAPE 0.85 13.3 22.6% **Regression Tree** 12.3 22.0% 0.87 **Random Forest** Light GBM 0.90 11.4 21.5%

monthly_sales_M1 monthly_sales_M3 month monthly_sales_M2 mo_in_quarter percent_discount retail_price_dealer_M1 life_cycle_progression percent_discount_M2 percent_discount_trend

SHAP Value

Our models reduce the error from the baseline by 14% (the baseline has SMAPE of 25%). Note: Baseline model is BMW's past models

Actual Sales	Optimal Sales	Actual Revenue	Optimal Revenue	Actual Profit	Optimal Profit
Baseline	-11%	Baseline	-9%	Baseline	+7%

The optimal increase in profit based on the given KPI is 7%. We estimate the elasticity as a linear function

Constraint 2: control sales share (KPI) $L_i * \sum_{i=1}^m D_i(p_{i,opt}) \le D_i(p_{i,opt}) \le U_i * \sum_{i=1}^m D_i(p_{i,opt})$					
Lower bound (%) sale share for model i Upper bound (%) sale share for model i					
	slope				
Variables:	0-109				
P _{i,opt} : optimal price for model i	0-10,				
P _{i,BE} : breakeven price for model i	with				
D _i (P _{i,opt}): predicted demand for car model i at the optimal price	optir				
	opiir				
References					

- Ferreira, Kris & Lee, Bin & Simchi-levi, David. (2015). Analytics for an Online Retailer: Demand Forecasting and Price Optimization. Manufacturing & Service Operations Management
- & Liu, M. (2014). Product demand forecasting and dynamic Pricing Considering consumers' mental accounting AND Peak-End Reference Effects. Journal of Applied Mathematics, 2014

mand = $m \cdot price + c$). Therefore obustness test was done on the ⊒. e and coefficient with a range of % error. The results show that even the worst-case scenario, the mal profit is still positive (2%).

Deliverables

We provide BMW with easy-to-modify Python scripts and interactive Tableau dashboard.

٢	Dynam	ic Pricing	J							Download]	
	Date From	January 2021	•	Date To Ju	une 2021 🔹	Discount Cl	hange (€) 1,000	Volume change 5	Deale	Verbund All		
Developn	ment Code	(Multiple values)	•	Model Code Al	I -	Sal	es Types (All)	Out of Production	oduction v	Simulatable •	ſ	- User-input
Car Model		Sales Type	ĝ	Last 3 Months' Discount ir	n % Recommende	d Discount in %	Last 3 Months' Discount in Euro	Recommended Discount ir Euro	Realized Volume	Demand Target	,	
Car Model	Α	Туре А		4.74	4 %	4.56 %	€ 1,433	1,376	õ 40	69	ר	
		Туре В		3.23	3 %	3.11 %	€ 1,321	1,269	250	377		Optimized result
		Туре С		6.8	6 %	6.59 %	€ 1,669	1,603	8	14		

Note: The example here is for illustrative purposes only and do not represent actual numbers

Next Steps

With proper data, this project can also be extended to independent BMW dealerships or other countries' markets.

Our contribution to the BMW Group Advanced Analytics team was pioneering work using optimization on sales/marketing use-case. We showed the impact of this project, which will pave the way for more analytics works, especially in optimization in the future.