Who to Target?

Boumble MANAGEMENT

Defining and Understanding Passive LTV in an Online Dating Network

Project Sponsors: Laura Mitchell, Luca Cerone, Nicola Ghio, William Fletcher

Faculty Advisor: Dr. Amy Farahat

MBAn Students: Amy Ho & Siqi Wu

Problem

Bumble operates on a freemium model and generates revenue through its premium subscription service and paid premium features. Across Bumble's active users, approximately 1.8 million are payers and the total value of these payments can be attributed to 'passive users' – users who are shown as options to swipe on during an app session.

Therefore, Bumble needs to understand the value that passive users bring to the platform. Our problem statement can be split into 2 parts:

- How should Bumble define an accurate measure of passive LTV?
- What factors impact passive LTV and how can these findings impact Bumble's future work? \bullet

Timeline



Data & EDA

The data we used can be divided into 3 parts:

User Data

Includes demographics, lifestyle habits and personal interests

Activities Data

Daily aggregation of user activities, event log of voting results

Revenue Data

Transactions on Bumble subscription packages and consumables

We validated our definition through:

Stakeholder agreement

Criteria for Sample Scope:

- Registered between 2021.3.1 and 2021.4.30
- Profile location in Los Angeles

Step 3

Non spam/test users

Defining Passive LTV

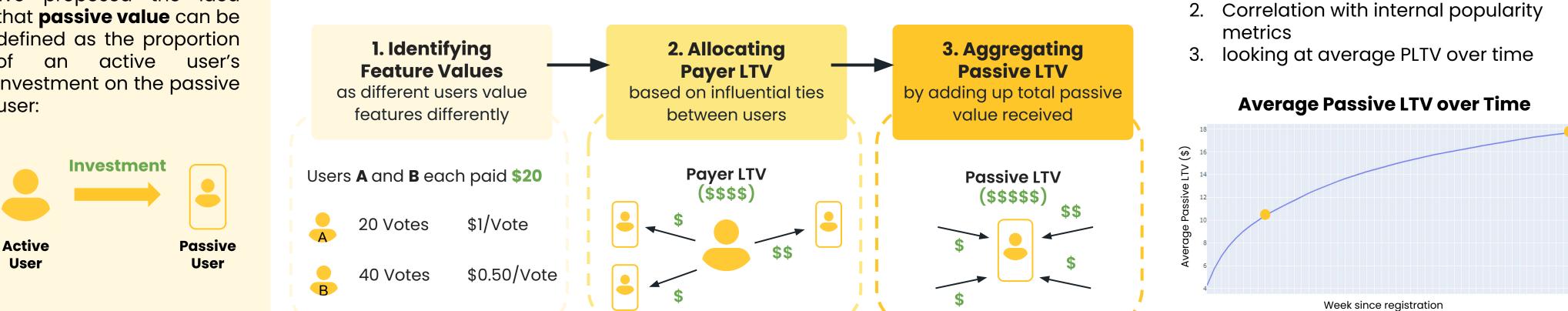
Methodology

Step 1 Step 2

We proposed the idea that **passive value** can be

defined as the proportion an active user's of investment on the passive user:

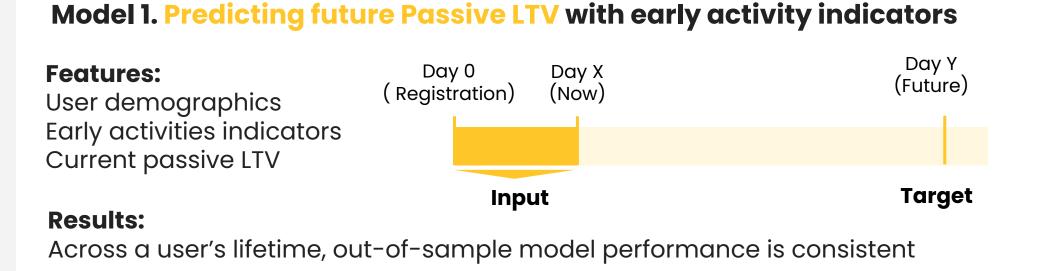
After iterating through 4 **candidate definitions**, we chose the one that included regular Yes Votes, SuperSwipes and Beeline matches. The steps for calculating passive LTV are:



5

Pay

Understanding Passive LTV



Model 2. Identifying key drivers of the most valuable user group

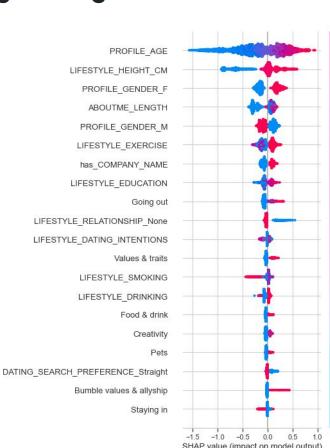
Target Creation				Priority of Target	Predictive Modeling		
Multiclass labels				Best User Group	Best Model: XGBoost		
Î	Low			High influence & likely to pay	Metrics	Score	
	Low High	High High	مر. مر	Rising Star High influence & unlikely to pay	Precision	0.58	
					AUC	0.79	

Time Window	R2	RMSE
Day 1 to Predict Day 7	0.70	7.40
Day 7 to Predict Day 28	0.84	9.43
Day 28 to Predict Day 56	0.93	7.13

We established a **company-wide definition** of Passive LTV for Bumble users, agreed by both the data science team and stakeholders

We provided the product revenue team with the ability to predict which users will have high potential PLTV for more sophisticated product pricing strategies.

also confirmed that We Height, Gender, Age, Exercise, Company are extremely important to a user being valuable to Bumble's platform for use marketing future In campaigns.



> 0.70

Out-of-sample R-squared in predicting passive LTV

58%

Of users correctly classified by their Payer and Passive LTV

2.3x

Increase in accuracy compared to baseline marketing strategy

Deliverables

We provided Bumble with the following deliverables:

Passive LTV Documentation

Full research process on Passive LTV definition

Modularized Code/Models

3 Python Scripts with a **README file for reproducibility**

Experimentation Recommendations

Potential A/B testing experiments for the future

Next Steps

Following our project, Bumble will continue to validate our Passive LTV definition and test if our findings are generalizable. This includes:

- Introducing more premium interactions into passive LTV definition
- Performing A/B testing on different users to track their responses product to pricing strategies
- Productionizing our pipeline appropriate with data ingestion