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(») Context € Data

The COVID pandemic had a strong impact on Coca-Coca Southwest Beverages’ revenues Google - COVID-19 Community Mobility Reports

Mobility reports show where users are

currently spending their time, e.g.

Recapturing the lost revenue as soon as possible has become a top business priority
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Optimize the allocation of business development visits to customers to boost Coca Cola’s revenue recovery
The customers here are outlets where you drink Coca-Cola on-site (restaurants, bars, etc.) Visiting customers is key
Master data is all about

' for boosting relationshi
Therefore, our task is to to or boosting relationship

> prioritize customers decide on who to contact first

Customer Customer profitability
and revenue growth
Customer

master data
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}?f March-April: Data Acquisition April-May: Data cleansing,

v ° & Stakeholder meetings first results with clustering August: Final Presentations
% Linear Regression model predicting revenues Jllly: CEO meeting
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/\ \ Misxed Integer Optimization model Automated ranking
AN April: Project scope change  June-July: Model developments, U o RollLO
testing & integration pcoming: Roll-Out
Gradient boosting model predicting order likelihood due tO C OVID

(> Methodology

1 — Clustering Customers

Customer Types Solution: RFM Analysis with Tenure-Aspect Can’t lose them New Breakout already revealed interesting results as to
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* These are very heterogenic! 1 weiohted : s iorite T " Interpretable
Ove.ra. welg .te scores gives customers’ priority. In — =  Consistent
Challenge addition, we incorporate the tenure of the customer to
Create clusters that compare customers account for different approaches towards new vs long- Business already started using this data-based
. . More recent purchases . . . .
to relevant peers and are globally consistent lasting customers. ("o = oo it o o 8 | P language to describe their customers in conversation!

Predicting Future Revenues: Order Likelihood: Revenue Recovery Grade:
Using regularized (elastic net) linear regression, we predict next month’s Using Gradient-Boosted Trees, we determine whether a Showing drop in revenue levels after COVID
total revenue f cach customer customer Wlorder in the next month This method is descriptive, it compares last years revenue to the current
Target: Revenue in § for next month Target: Will the customer order within the next month? year (over a fixed period of weeks, e.g., week 6 to week 12). The relative
= = change is mapped to a grade:
Predictors: m Engineered rex.fenue feature.s, .tlmes betwe.en orders, Predictors: m Engineered rex.fenue feature.s, .tlmes betwe.en orders, * e PSR .
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Revenue up to -50% vs previous year

B
C Revenue lower than -50% vs previous year
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10-fold cross-validation to tune hyper-parameters

Did not buy in both time petiods

Why linear regression, it sounds so obvious?

. . . While before COVID
Good question! Linear regression—out of all the tested lockdowns the revenues
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Chart showing shares during some post-lockdown period
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True Positive Rate
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on low to medium 3
Most important features:
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oo .. v | = Tocation Proved to be a very valuable business metric
\ I »  Historic revenue N | _ —weso | Order 54%, 11% Already being implemented in a dashboard
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Customer value objective: weighted combination of predicted
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revenue, order likelthood, revenue recovery, clustering results, 134 / 0 MOrc revenuce VlSlted “
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Revenue order Outlet Constraints: Remember, the subtrade channels are very .
Optimization Objective  Prediction Likelihood Profitability heterogeneous! We constraint our solution space so that within the list 15 / 0 More pr O ﬁtable customers

Fasy to adapt % g of customers of visited, there is a balance of subtrade channels.
* Output: Prioritized list of customers ‘210/0 more relevant customers \
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Revenue Local
Recovery Grade Accounts

Clustering

Backtesting
()
Backtesting perf()rmed on W VS. “ The optimization prioritizes more valuable customers (see above) | . . o _
= During recovery time the prioritized customers show higher growth
half a year of data, * There is a statistically significant correlation between our prioritization

comparing actual visit p lans and revenue growth * Senior and operations stakeholders convinced by these initial results

versus the optimiz ation Top prioritized customers significantly less affected by COVID impact | to run pilot of model to uncover causal links and recapture revenues

0@° Optimization results integrated seamlessly into = Pilot test will be put in place next weeks e
¢ » current planning tool

Our model is adaptable to different business A; g; " Model will impact more than 40k customers

context by re-weighting T

Brick structure, you can add and remove = First Advanced Analytics project at Coca-Cola Southwest Beverages :, Iy2

oo
components as you need




