True Sales Potential

Tico Han

Sydney Mo

Faculty Advisor: Dr. Arnold I. Barnett **Company Representative:** Estefanía Elizondo Gómez

Project Charter	Mar Apr		Мау		Jun		Jul		Aug
	On-boarding	ing	Code Outline		1st Or	n-site Visit	2nd On	-site Visit	Hand-ove
	Data Exploration			1st Revisio	st Revision: Accuracy		2nd Revision: Methodology		3rd Revision: Validation

Problem

With its wide range of customers through different trade channels, geographical locations, and product portfolios, CCSWB aims to create tailored service experiences for its customers by understanding their characteristics. Therefore, sales potential is introduced to measure the unrecognized room-to-grow of a customer.

How much more can we sell?

It is a win-win solution for both CCSWB and its customers because it drives extra sales for both sides.

Data

Unleashing the untapped opportunity with Big Data

The data we use can be divided into three parts:

Scope: 2018 ~ 2021 Dallas Fort-Worth (DFW) Region

- Internal: Sales, Customer Characteristics, Product Information
- **External:** District Demographics (i.e. population, median income)
- Nielsen: Beverage Category Market Share

Features extracted from the data:

Sales-related:

Number of categories sold Last purchase date/quantity Last 30/90 days total sales Local market share

Non-sales-related: Sub Trade Channel Sales Office Business Type

Objective

- Identify internal & external factors that can affect sales potential
- Calculate a monthly, customer-level true sales potential by product category
- Provide guidance to **optimize sales and resource allocation**

Time series: Year/Month/Quarter/Weekday Seasonality (Holiday)

Geographic Demographic (education, gender, race, income)

Prediction

To accurately estimate potential, we need an accurate forecast of sales volume. During data exploration, we observed very distinct purchasing habits across channels and beverage categories. Therefore, our ensemble model tackles this problem by taking consideration of sales propensity:

V: Volume forecast = unit of sales volume given purchase **D**: Propensity forecast = **whether** customer will make purchase

Prescription

Based on the calculated potential and the prediction of purchase decisions, our model segments customers into 4 tiers to instruct visitation:

Priority of Visit

- 1. Target Customer: (Potential is **high** & **will** purchase)
- 2. Maintain Relation: (Potential is low & will purchase)
- 3. Rising Star: (Potential is **high** & will not purchase)

Impacted Customers **13.7K**

Correctly Identify

99% sales opportunity

Out-of-Sample R-squared

Out-of-Sample Area Under Curve

Rising

Star

Limited

Opportunity

Target

Customer

Maintain

Relation

Result

Our result is very promising. We compared the OSR2 across all three models. It turned out that ensemble model outperforms the other two(or equivalent) in all trade channels.

Baseline:

V = V of last month

One-step Model:

Linear Regression choose Random Forest Best OSR2 XGBoost in validation

Ensemble Model:

choose Linear Regression Best OSR2 Random Forest (volume) XGBoost Х Linear Regression choose Random Forest Best OSR2 Gradient Boosting (propensity) XGBoost

Validation

1. Back-testing: palo pinto (Jan 2020)

+37.9% than baseline

2. On-Shelf-Availability (OSA) vs. Potential

OSA = % of items that are in-stock on the shelf

Assumption

- low OSA => high potential (Demand not met, we can sell much more!)
- high OSA => low potential (We are selling as much as we can.)

Result

- Correlation can be proved in several channels.
- Limitations: many other factors also affect OSA.

Future Steps

Optimize resource, consider profitability

Pilot launch / **Proof of Value**

