Optimize the Next Best Action Engine

with Reinforcement Learning

Project Sponsors: Michael Nipple, Sandeep Balasundaram, Natalya Shcherban

Faculty Advisor: Prof. Retsef Levi

MBAn Students: Katherine Wang & Sylvia Zhang

Problem Statement

Problem

What is Recommendation Engine?

Comcast delivers approximately 400 million product recommendations annually to its customers through the Xfinity Mobile App channel, with the product recommendation engine called Nexus.

What is the current method?

The existing approach utilized by Nexus system relies on micro-segmentation, a clustering-based technique, which primarily depends on static data.

Data

Micro-segmentation Output Features: Includes segments, probabilities, delivered date and success flags (target variable)

Customer Features: Monthly recurrent revenue/charges, tenure,

Product Features:

Product name, New product flags, placement (engagement or sales) and product category

Objective

In 2023 Feb, on Xfinity App, there are:

37M recommendations **4M** customers

39 unique products

Micro-segmentation Success rate is only **2.3%**

Goals: The project aims to improve the Nexus recommendation engine with the following goals:

- Improve success rate by developing a personalized and interactive approach.
- Use **Reinforcement Learning** to drive this improvement.

Modelling Approach

Reinforcement Learning Framework

We use *contextual multi-armed bandits model* which

- uses the customer and product information to make recommendations
- compares its recommendations with historical data
- learns and adjusts its future choices and continually evolves

To incorporate contextual information, we use *LinUCB (Linear Upper Confidence*) Bound), which also balances the trade-off between exploration and exploitation (through parameter α) while making recommendations based on estimated confidence levels.

I'll recommend some

Counterfactual Reward Estimation

Understanding feedback on recommended products is straightforward, but how about unseen ones? We group customers into segments, estimate product preferences for each group, and use these estimates to predict satisfaction. By using these predictions, we create a 'what-if' scenario to understand how well different, untested recommendations might have performed.

Results and Impact

Impact

Provide nearly 400 Million recommendations per year

Build interactive recommendation model based on feedback

Adapts to individual customer preferences

Future Work

Conduct A/B test to compare the performance with old model

Put model in production to get customer's real-time feedbacks

More advanced model for estimating counterfactual rewards, e.g., Tensor Completion

Difference in Success Counts