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Problem Statement

Problem Data

What is Recommendation Engine? Micro-segmentation Output Features: / In 2023 Feb, \
Comcast delivers approximately 400 million product recommendations annually ﬁ Includes segments, probabilities, delivered on Xfinity App,

to its customers through the Xfinity Mobile App channel, with the product date and success flags (target variable) there are:

recommendation engine called Nexus.

O Customer Features: 37M recommendations

What is the current method? @ Monthly recurrent revenue/charges, tenure, 4M customers

The existing approach utilized by Nexus system relies on micro-segmentation, a CLV and contact rates 39 unique products
clustering-based technique, which primarily depends on static data.
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Engine Product * Improve success rate by developing a personalized and interactive approach.
Recommendation * Use Reinforcement Learning to drive this improvement.

Modelling Approach
Reinforcement Learning Framework Counterfactual Reward Estimation
We use contextual multi-armed bandits model which Understanding feedback on recommended products is straightforward, but how about
* uses the customer and product information to make recommendations unseen OnES? We group customers into Segments, estimate prOdUCt preferences for
« compares its recommendations with historical data each group, and use these estimates to predict satisfaction. By using these predictions,
e J|earns and adjusts its future choices and Continua”y evolves we create a ‘what-if’ scenario to understand how well different, untested
@ recommendations might have performed.
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To incorporate contextual information, we use LinUCB (Linear Upper Confidence
Bound), which also balances the trade-off between exploration and exploitation Mean Reward History after Counterfactual Estimation over Steps with Standard Deviation
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Results and Impact

Impact Future Work

Comparing Difference in Success Counts between Our Model and Baseline Model @ Provide nearly 400 Million

recommendations per year Conduct A/B test to compare the
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