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Objective Values:

Minx  ∑c(βcxc + ɣczc + ƍc∙(sc+∑jxcj)) + ∑t⍺txt
 [ Log Odds ]           [ Timing ]

Key Variables/Inputs:
xcjt - sending an email j to cluster c in week t
zij - known centroid demographic value j for cluster c
βcj - coefficient for cluster c for email category j
ɣck- coefficient for cluster c for demographic k
⍺t - coefficient for emails in week t

Constraints:

● Restrict the total number of 
emails that can be sent in any 
one week

● Restrict the total number of 
emails sent in any one category

● Restrict the total number of 
emails from one category sent in 
any two-week period

Exact constraint values malleable 
for different strategies.

^ Fig 6: Test Outcomes from Different Mix Strategy Sets

^ Fig 5: Example Email Mix Strategy Set

^ Fig 1: Distribution of Roll Revenue Change

^ Fig 2: Cluster Churn Rate 

> Fig 3: Decision Tree for 
each Cluster and the 

assigned purity and size of 
each leaf ^ Fig 4: Feature Importance of Model Factors

Combining the modelling performed on Churn Prediction and Segmentation we created a 
decisioning engine through optimization of cluster centroids to assign email mix strategies:

Segment Assignment

Product and Usage Data

Predictive Model
Optimization 
Formulation

Email Mix Strategies with 
assignments for each 
rolling individual

Cluster 
Centroid 

Q: What differentiates clients and 
their actions during Promo Roll?

Q: What role does Email Campaigns 
play in Promo Roll?

Q: Which Emails should be sent to 
each client undergoing Promo Roll?

A: Through our segmentation of the Promo 
Roll client base we isolated important 
subsets of clients and modelled the 
importance of various factors on churn

A: Based on the results of our modelling 
Emails from a subset of controllable 
campaigns were found to correlate with 
reduced churn, and a further randomized 
test was proposed to continue analyzing the 
impact of emails on churn

A: An optimization formulation based on 
modelling of churn rates enabled us to 
generate email mix strategies both universally 
and by cluster. This resulted in a conservative 
reduction in churn rate of over 3 percentage 
points in offline testing
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Segmentation via Clustering was performed 
to isolate important sub-groups within the 
client base

● K-means with Silhouette Score was used to develop the 
clusters and select the correct amount 

● Churn was omitted to avoid data leakage
● A decision tree was overlaid for interpretability

Predictive Modelling was conducted to assess the impact 
of various factors on churn, and aid in the development of 
a prescriptive framework

Data Includes:
● Emails by key Email Program
● Number of total Emails Sent
● Selected Demographic 

Features

Models Examined:
● Gradient Boosting

○ XGBoost
○ LightGBM

● Variety of Logistic Regression
● Random Forest

Final Model: Logistic Regression
- AUC: 0.726
- Accuracy: 89.3%
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