General Motors: OnStar Re-Marketing

MIT Students: Dayna Wilmot Gibson Russell

MIT Faculty, PhD Advisors: Professor Georgia Perakis Leann Thayaparan

General Motors Team:

Matt Brown Venkat Dannana Derek Hazard Eric Grezlik

The GM OnStar Capstone Project developed a personalized product offer strategy for OnStar customers to increase free trial activation rates, the first step in gaining a paying customer.

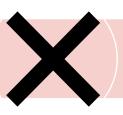
Relationship initiated

Entry to paid relationship

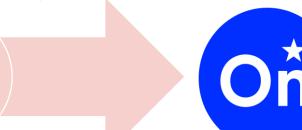
Subscription cancelled

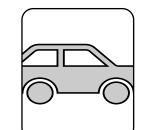
Re-marketing campaigns

activation


Trial

Re-entry to paid relationship




Marketing

 Campaign touchpoint frequency, subscription status, method of contact

Demographics

• Marital status, age, number of children, income bracket

Application Usage

• Usage of OnStar apps, such as wireless hotspot, remote door lock

Data

Which Package?

Premium

Essentials

Safety & Security

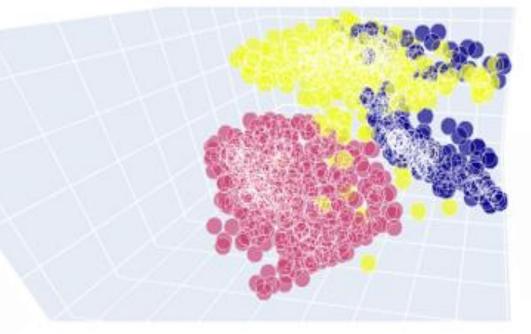
Remote Access

Connected Vehicle

Prediction

- ✓ Recommendations from the model will be **piloted** on a cohort of OnStar re-marketing customers in the next six weeks.
- ✓ GM Team is currently creating marketing. materials informed by features relevant to our model.
- ✓ If rolled out to the entire re-marketing cohort, our work has the **potential for a \$1M revenue** increase compared to current practice.

Business Impact

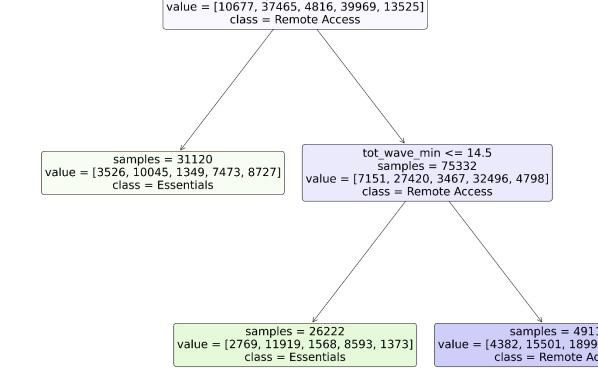

Segmentation Model – Grouping Together Similar Customers

We implemented two segmentation methods, an unsupervised and a supervised approach. The unsupervised model utilized principal component analysis (PCA) and Gaussian mixture clustering, and the supervised approach implemented decision trees.

PCA + Clustering Cumulative Explained Variance Variance 8.0 0.6 0.4 100 **Principal Component**

- PCA to reduce dimensionality
- 65% of variance explained

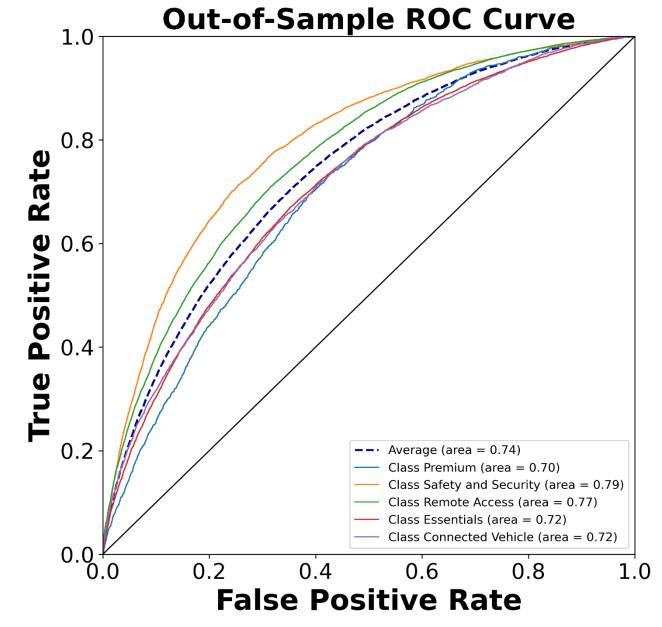
Cluster Assignment Using Gaussian Mixture



color noting cluster assignment Clustering on principal

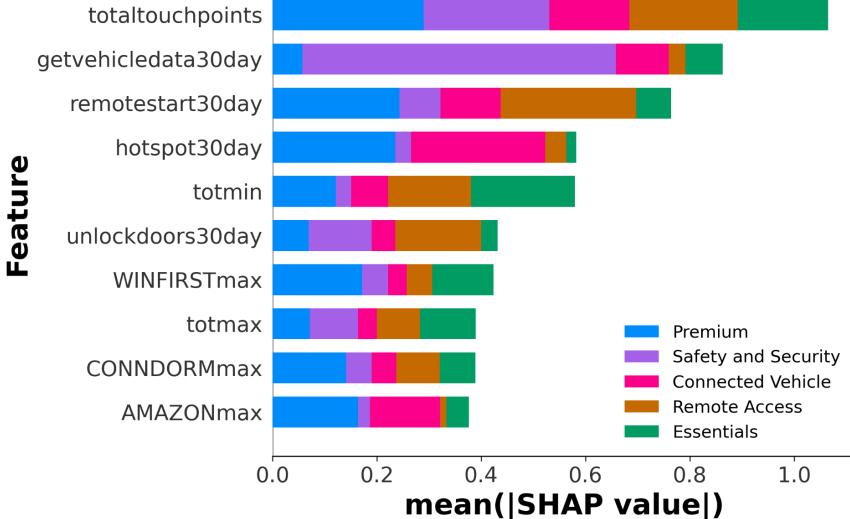
* 3-dimensional plot of first 3 principal components with

- components
- Non-spherical shape detection


Decision Tree

- Predicting package preference
- 9 trees trained constraining number of leaves from 2 – 10

Predictive Model – Predicting True Package Preference


We iterated on several models to determine the predictive approach for this task. Our final iteration was a LightGBM model under an unsegmented scenario. Hyperparameters were tuned using an automated optimization tool (HyperOpt) in Python with 5-fold cross validation. Our final model improved accuracy by 14.8% against baseline and had an AUC of 0.74.

Training	Testing
0.5715	0.5331
0.3773	0.3446
0.5371	0.4988
0.5715	0.5331
0.5786	0.5036
	0.5715 0.3773 0.5371 0.5715

- Key features include: Remote Start, Get Vehicle Data, Number of Marketing Touchpoints
 - Feature usage insights used by GM Marketing for pilot copy

SHapley Additive exPlanations (SHAP) totaltouchpoints getvehicledata30day remotestart30day hotspot30day

