

Cravings Can't Wait Routing food deliveries under time uncertainty

By: Gabriel Afriat & Mariana Suarez Faculty Advisors: Professor D. Freund & Professor S. Graves Grab Advisors: Larry Lin & Yibo Ji

Problem Statement

Overview

- **Company:** Southeast Asia superapp **Scope:** GrabFood deliveries
 - **Current State:** Batching algorithm assigns drivers to routes containing one or more orders based on deterministic time estimates Limitation: Does not take into account real-world travel time uncertainties

Goal

To add **robustness** (the consideration of uncertainty) to Grab's batching algorithm in order to **minimize delays**

- Key to increase **user satisfaction**
- Vital to understand **trade-off** between time efficiency and order delays

Problem Architecture

Pick-up delivery vehicle routing problem

Model Output The path that each driver should take

What Do We Need?

Data Input

• **Travel times:** 100 historical times per arc

- Time windows: lower and upper time bounds per

pick-up and drop-off

• Vehicle capacity: number of orders a driver can carry

3. Optimization Generate solution path for drivers by taking into account time travel uncertainties

Travel times for each arc is assumed to be known in advance Nominal $\left. \left. \right. \right\}$ Sum of the time spent by each driver in the graph $\sum S_{3n+k,k}$ Ensures all pick up nodes such that $\sum_{k \in K} \sum_{\substack{j \in P \cup D \\ (i,j,k) \in l_x}} x_{i,j,k} = 1$ $\forall \ i \in P$ are visited The driver who picks up the $x_{i,j,k} - \sum_{\substack{j \in V \ (j,n+i,k) \in l_x}} x_{j,n+i,k} = 0 \quad orall \; k \in K, \; orall \; i \in P$ $\overbrace{\substack{j \in V \\ (i,j,k) \in l_x}}^{j \in V}$ order must drop it off \sum $\forall \ k \in K$ $x_{2n+k,j,k} = 1$ $\substack{j \in P \cup \{3n+k\}\\(i,j,k) \in l_x}$ $x_{i,3n+k,k} = 1$ $\forall \ k \in K$ Flow constraints $i \in D \cup \{2n+k\}$ $(i,j,k) \in l_x$

 $\sum_{\substack{i \in V \\ (i,j,k) \in l_x}} x_{i,j,k} - \sum_{\substack{i \in V \\ (j,i,k) \in l_x}} x_{j,i,k} = 0$ $\forall \ k \in K, \ \forall \ j \in N$ $M^{(S)}(1-x,\ldots) \leq S$ $\mathbf{S} = \mathbf{1} \mathbf{+}$ $\forall (i \ i \ k) \subset I$

4. Warm Start

Improve solution **quality** by providing the solver with an initial solution (here the unbatched solution)

5. Reducing the Dual Gap

Increase **confidence** in solution quality and facilitate the search for a better solution during **branch** and bound by experimenting with **5** formulations

6. Fine-tuning

Identify **best combination** of **hyperparameters** for the clustering, graph construction, and optimization to improve performance across models

A direct fine-tuning would be very long.

$\mathcal{S}_{i,k} + \frac{\iota_{i,j}}{\iota_{i,j}} - \mathcal{M}_{i,j} (1 - x_{i,j,k}) \leq \mathcal{S}_{j,k} \forall (1 - x_{i,j,k}) \leq \mathcal{S}_{i,k}$	$(i, j, \kappa) \in \iota_x$	
$a_i \leq S_{i,k} \leq b_i$ $orall k$	$x \in K, \forall i \in V$ Time window constraints	
$S_{i,k} \leq S_{n+i,k}$ $orall k$	$x \in K, \ \forall \ i \in P$	
$L_{i,k} + 1 - M^{(L)}(1 - x_{i,j,k}) \le L_{j,k} \qquad \forall \ (I_{i,k}) \le L_{i,k} \qquad \forall \ (I_{i,k}) \ (I_$	$(i, j, k) \in l_x$ with $j \in P$	
$L_{i,k} = 1 - M^{(-)}(1 - x_{i,j,k}) \le L_{j,k}$ $\forall (L_{i,k} \le C \forall k$	$(i, j, \kappa) \in i_x \text{ with } j \in D$ $x \in K, \forall i \in V$ Capacity constraints	
$L_{2n+k,k} = L_{3n+k,k} = 0 \qquad \qquad \forall \ k$	$c \in K$	
$x_{i,j,k} \in \{0,1\}$ $orall ($	$i, j, k) \in l_x$ Binary and positivity	
$S_{i,k} \geq 0$ $orall k$	$c \in K, \forall i \in V$ constraints for variable	
$L_{i,k} \ge 0$ $\forall k$	$x \in K, \ \forall \ i \in V$ definition	
Robust	Distributionally Robust	
Time constraint verified for any time	Time constraints verified in expectation for	
in a given uncertainty set	any probability distribution in a given	
	ambiguity set	
$S_{i,k} + t_{i,j}^{(u)} - M_{i,j}^{(S,RC)}(1 - x_{i,j,k}) \le S_{j,k}$	$\sum p_{i,j}^{(l)} \Big(S_{i,k} + t_{i,j}^{(l)} - M_{i,j}^{DRC} (1 - x_{i,j,k}) - S_{j,k} \Big) \leq 0,$	
$\forall \ k \in K, \ \forall \ (i,j) \in A, \ \forall \ t_{i,j}^{(u)} \in \mathcal{T}_{i,j}(\gamma)$	$orall \in I_{training} \ orall \ k \in K, \ orall \ (i,j) \in A, \ orall (p_{i,j})_{l \in I_{training}} \in \mathcal{P}_{i,j}(ho)$	
where hyperparameter γ measures the size of the	where hyperparameter $ ho$ measures the size of the	
uncertainty set and therefore the level of robustness	ambiguity set and therefore the level of robustness	

the close to		
concave nature of	ba	
the batch efficency		
evolution with this		

parameter

Smoothed batch efficiency against max_neigh

Trade-off between time efficiency and order delays

Batch efficiency

Develop robust algorithms that improve Grab's operations

6% Maximum proportion of late orders

2

70% Maximum delay

Key Takeaway

By including real-world uncertainty of driver routing times in delivery algorithms, we are able to reduce the number of delayed orders and improve food delivery operations.