MIT MBAn 2020 CAPSTONE PROJECT

ADVISORS: Prof. Karen Zheng, Michelle Li **LOCATION:** Copenhagen, Denmark **GROUPM:** Kristjan Brøderskift, Andreas Christensen, Danni Dromi, Martin Olesen, Fredrik Skeppstedt, Mathias Stuhaug

PEGGY OLSON 2.0 CREATIVE AI

Girish Kishen Govindarajan Socolov

PROBLEM STATEMENT

WHY?

Video production is expensive. Creatives spend hundreds of hours researching ads of competitors & related products.

WHAT?

The idea is to provide inspiration to creatives in the early stages of video production. This will also free up a lot of time for other tasks.

HOW?

A data-driven ad search platform where creatives can filter on features of ads and clearly communicate ideas to clients.

CUT DETECTION

Creatives would like to mix and match shots from different videos on to their storyboard. Hence, we have to come up with a way to split videos based on camera cuts.

AD PURPOSE

Ads are branding or tactical in nature. How can we leverage the call-to-action text, brands and logos to quantify the purpose of an ad?

Peggy 2.0 **Features**

≣ō

\$

MOOD DETECTION

The same visual elements and objects can appear in multiple videos, but in different contexts. Can we utilize the background music to infer the mood or tone of the ad?

SIMILARITY SEARCH

When a user searches for objects that are not present in our videos, we would still like to show them related cuts. We need a versatile algorithm that can search for similar ideas.

AUC ACCURACY

36%

43%

29%

45%

45%

22%

60%

64%*

0.61

0.70

0.73

0.76

0.76

0.64

0.85

0.87*

F1	81%	0%	19%
F2	89%	0%	11%

AD PURPOSE CLA	SSIFICATION	METHOD	Ordinal Classificat Transform an ord k-class problem in	video ion 1 lered 2 nto :	X (features)) Y (score) 1 3 :	original data with 3 ordered classes		RESUL	TS	
			k-1 binary classifi problems.	cation n		2		MODEL	LABELING	METRIC	VALUE
DATA	FEATURE			f₁(x) = P(score >1)			f ₂ (x) = P(score > 2)	Logistic Classifier	2-class	Accuracy AUC	80% 86%
370 ads scored along tactical-branding axis.	EXTRACTION	Call-to-action text	Train $f_1(x)$ and $f_2(x)$ are the pdfs for	 = P(score = 2 or video x 1 	3) Y (score > 1) 0	video x	= P(score = 3) Y (score > 2) 0	Ordinal Logistic Classifier	1-3 Scoring	MAE	0.45
Label types: • 2-class ("Branding" &	$\rightarrow \bigcirc \rightarrow$	Logos O	classifiers.	2 : : n	1 : 1	2 : : n	1 : 0	Ordinal Logistic Classifier	1-5 Scoring	MAE	0.67
 "Tactical") Ordinal Score 3-level Ordinal Score 5-level 	video frames Google Cloud Vision API	 area position Total: 25+ features 	Predict let's say for video j: $f_1(x_j) = 0.8$	P(score = P(score = 2) =	1) = $1 - f_1(x_j) = 0$ $f_2(x_j) - f_1(x_j) = 0$ = 2) = $f_2(x_j) = 0$	0.2 Since 0.2 is m predi	e P(score = 3) aximum, we ct a score of 3 or video j	Ordinal XGBoost Classifier	1-5 Scoring	MAE	0.74

SIMILARITY SEARCH

DATA

5,600+ labels detected in videos and 20,000 most common English words

MOTIVATION

End product is a user interface where the user inputs keywords and we show similar videos/cuts in that context e.g. 'tiger' should return 'lion' and 'cheetah' too.

EMBEDDING LABELS

1 x 300 vectors User keywords representing the keywords

compare with vectors return sorted cuts by similarity in 7,000 videos using cosine similarity

TAKEAWAYS

- Given user's input, we return shots that have similar labels detected within them.
- A huge advantage of this approach is that, if no cuts contain a keyword, we still return something relevant. For example, if we do not have the label "cabriolet" anywhere in the cuts, we would still return cuts with "car", "convertible" and "coupe".

DASHBOARD

IMPACT

Language versatility allows the tool to be marketed to all global clients of GroupM.

Online search happens in seconds, and the user is met with a set of similar scenes, their moods and purpose.

As per GroupM's estimate, this will save the creatives 375+ hours of work (Nordic region).

NEXT STEPS

- **Front-end**: Right now, Peggy accepts only keyword searches, taking images or sketches as input will enhance functionality.
- **Modeling:** Voiceover or narration can be leveraged to infer mood and ad purpose.
- **Maintenance**: GroupM can benefit from recording the details of all new ads produced in terms of the scenes, music, etc.