The Hidden Cost of Healthcare

Transforming medical equipment management with data and analytics

Why it r	matters	Current practice	HANDLE Global	Question		
\$60 bn annual medical equipment spending (U.S.)	30% of total costs of health systems)	"The doctor with the loudest voice gets new equipment" No data-driven decision like in other industries (e.g. transportation)	First to offer a data solution for asset management in healthcare	Can we use historical maintenance data to provide decision support for better asset replacement strategy?		
Descriptive Analytics						

Maintenance cost over lifecycle (clustering)

Time series clustering on maintenance cost aggregated by product/category **Distance metric**: Dynamic time wrapping & Euclidean **Method:** Agglomerative/hierarchical clustering

Cluster across life cycle

Assets per cluster

high

high

high

Lemon analysis

Lemon = asset with significantly higher life-time maintenance cost as its peers 1- Demeaning of asset maintenance cost to achieve global comparability 2- Select global cutoff for lemons - how much more expensive is a lemon?

Example Mindray Passport2 (monitor)

Outcome

Handle Product ID Name	Lemo n	Non- Lemon
GE Healthcare SENOAdvantage	40%	60%
Philips L157IO	29%	71%
GE Healthcare MAC5500HD	24%	76%
GE Healthcare SAM	23%	77%

20%

20%

17%

17%

13%

12%

11%

80%

80%

80%

83%

83%

88%

88%

Majority of assets show stable maintenance cost over time

Products can be ranked by relative number of "lemons"

Predictive Analytics

Predictive setup

Predicting expected annual maintenance cost to detect early costly assets.

Comparison of high maintenance assets at t & t-1

Only ~17% of high maintenance assets in year t-1 maintenance again high year t. are **Disaggregated cost is unstable**

A Global-Local-Baseline (GLB) approach

Example of GLB

For each category, we select the **best predictor** between a local linear regression, a global gradient boosting and the previous year's cost

R² improvement

Feature importance

Feature importance makes our model more interpretable, but also will guide future data collection and equipment handling.

Shap plot

Asset age is a weak predictor for maintenance cost.

28% R² improvement with GLB

Maintenance cost is predicable with MAE \$90 per asset per year

Prescriptive Analytics

What to optimize for?

HANDLE score: Asset quality **Expected maintenance cost:** Cost and reliability **Physician preference:** Physician satisfaction **Past vendor support:** Risk of higher replacement effort Strategic goals: E.g. Standardization **High-revenue equipment:** Risk of revenue-loss Patient-facing equipment: Patient experience

Technique:

- Iteration over objectives to find Pareto optimal solution
- **Relaxation** of binary constrain for better scalability ullet

Improvement

15% increased capital-effectiveness

Trade-off analysis

Pareto frontier to illustrate tradeoffs between multiple objectives

Capstone Team: Jean Bouteiller & Robert Breyer **Faculty Advisor: Prof. Dr. Alexandre Jacquillat**

HANDLE Team: Dan Kaskinen

