

PARATRANSIT OPERATIONS:

Impact of driver behavior and demand forecast

John Nicholas & El Ghali Zerhouni

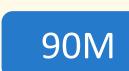
Faculty Advisor: Prof. Dimitris Bertsimas

The RIDE advisors: Abhishek Rai Christopher Jurek

PROBLEM STATEMENT

The RIDE is MBTA's door-to-door shared-ride paratransit service managing large complex operations

Annual budget in 2019 \$115M


1.65M Number of trips in 2019

Number of drivers trained by **4 providers** 1238

Objectives: Quantify and include driver behavior in the RIDE's operations management schemes and reduce demand and supply mismatch

DATA SOURCES

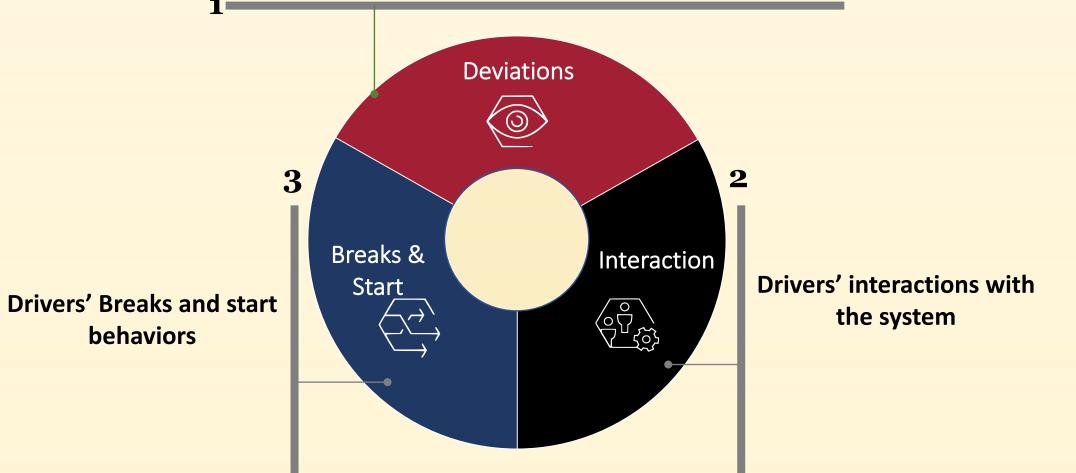
Transportation and scheduling data sources requiring massive data computing

GPS points every 2 minutes indicating driver's **position**, speed and system interaction

Trips data on scheduled trips, their timings and associated driver

Routes data on the **overall system schedule**

Quarterly run-structure: supplied driving hours in the overall network


Problem definition February-March	Feature analysis and engineering April-May	Driver score design and delivery June	Demand forecasting model July	

DRIVER BEHAVIOR

Quantifying behaviors

Our exploration analysis on the GPS data lead to three comprehensive categories of driver behaviors:

Drivers' Deviations from The RIDE's schedule

Driver score definition

Two goals were defined for a driver score: Capture the most important behaviors and differentiate drivers based on their performance. A survey conducted with the RIDE's managers assessed the importance of each feature. Hence, for driver j on day d we get the following score:

Variability

-Importance

DEMAND FORECAST

Identifying non-revenue time

overall network, the In we identified that 50% of the supply time is spent without any client interaction

The supply is defined by hour, by provider, by route lead to the idea of a **geographic approach**

Geographic clustering

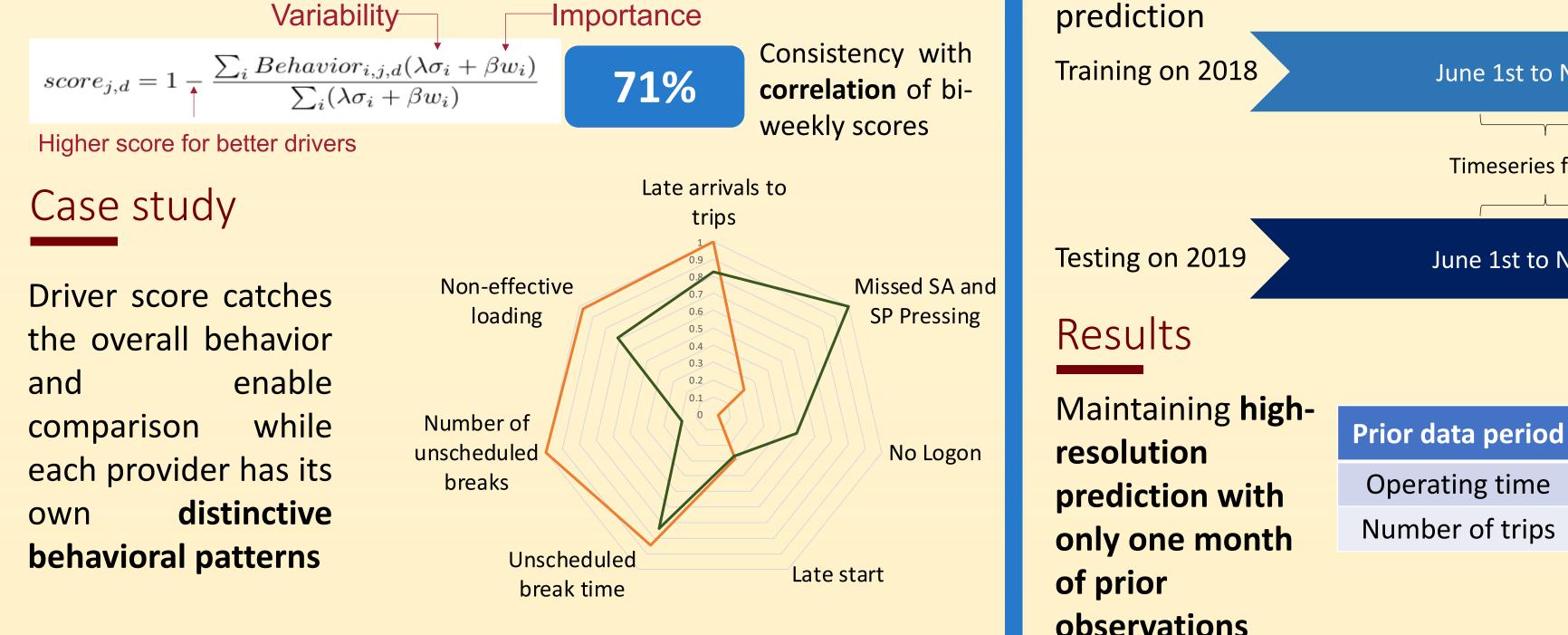
clustering helped K-means US 8 stable identify geographical clusters for trip pick-ups and departures

Granularity

TIME-BIN TRAJECTORY

Model building

DAY OF THE WEEK


Timeseries' analysis with tsfresh and gradient boosting model for

Avg proportion of estimated Supply Hours Not Servicing Trips (max optime 0.3

Time with no client interaction per provider

Provider A Provider B Provider C

Greater Boston clusters

	Training on 2018	June 1st to No	ov. 23 rd	Nov. 24-30th
		Timeseries features		Values to predict
d	Testing on 2019	June 1st to Nov. 23rd		Nov. 24-30th
	Results			
	Maintaining high-	Out-of-sample R ²		
	resolution	Prior data period	Six months	One month
	prediction with	Operating time	70.1%	69.1%
	only one month	Number of trips	79.5%	78.8%
	of prior			
	observations			

- Identify personalized key areas of improvement for drivers and providers
- **BUSINESS IMPACT**
- Link with the garage location for drivers depending on geographical demand
- Assess performance to define incentives for providers and drivers
- Provide an assessment methodology to quantify the efficiency of The Ride's discussions with providers
- New design of the run-structure precisely identifying which areas are served at each time-bin
- Moving from a scheduling system based on optimizing only to a system based on prediction-prescription methods