"To Meet, Or Not To Meet, That Is The Question"

Optimizing Interaction Strategies

Capstone Team: Riccardo Coato Olga Kyriazi

Faculty Advisor: Prof. Colin Fogarty

MFS Team:

Nadine Kawkabani, Brian Shaw, Brendan Mannix, Mason Grimshaw

Problem Statement

Company: MFS Investments is an Asset Management Company. In the Retail segment, investors entrust money to financial advisors who, in turn, come to MFS to buy financial products

Problem: The MFS client-facing team interacts with financial advisors over time to foster a long-term relationship and to sell MFS products. Our goal is to optimize these sequences of interactions (i.e.: interaction strategies)

Wholesaler

Data

5 years of data from multiple sources

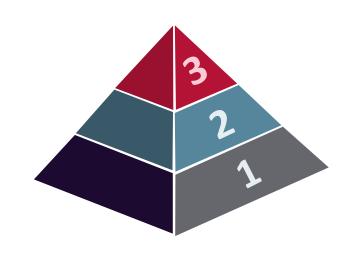
Past Transactions Data

Advisor Interaction Data

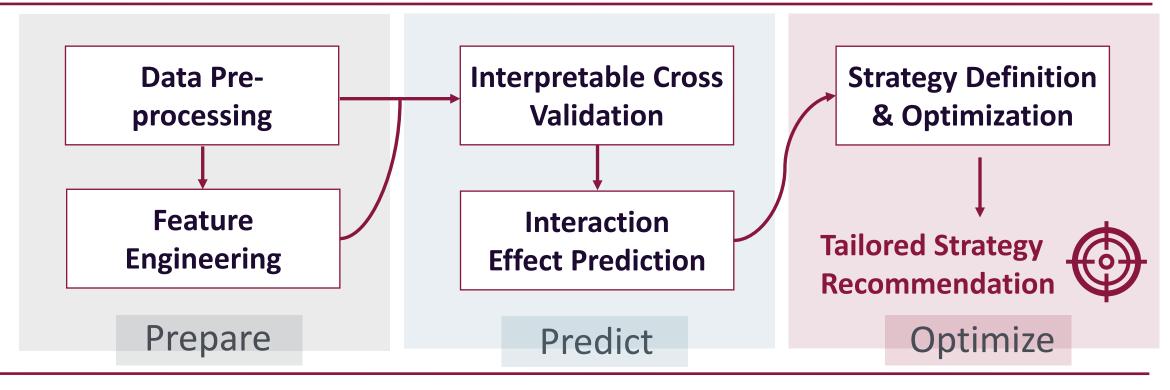
Fund Performance

Advisor Profile Data

Approach



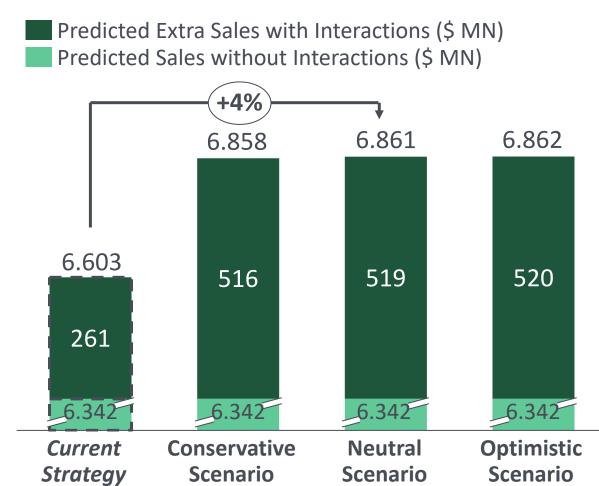
- **3-Step Approach:** Prepare the Data, Predict and Optimize
- End-to-end Pipeline: From raw data to a final recommendation
- Modular Solution: Blocks can be swapped and implemented independently

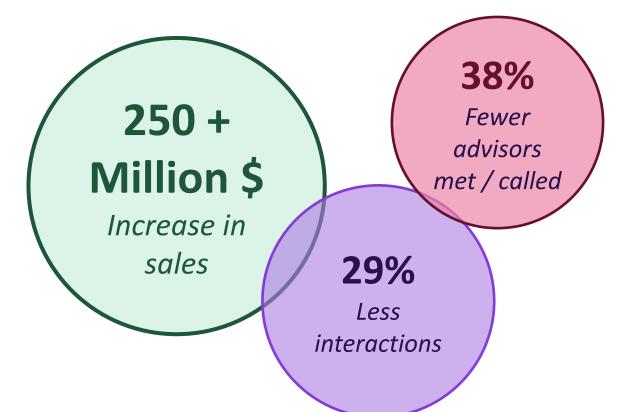


Impact

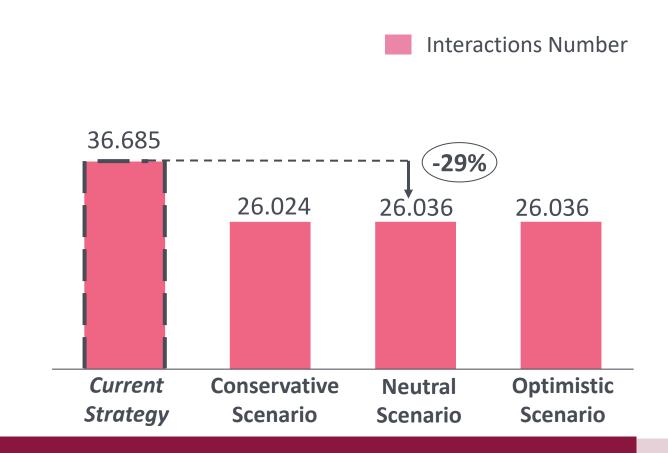
We compare hypothetical outcomes using our approach under different scenarios (i.e.: different assumptions for our optimization model) to current strategies for the main client firm of MFS.

We observe a **sizeable expected increase in sales** in all scenarios



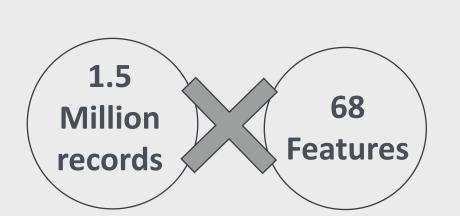


Overall, our approach shows an opportunity to make more effective meetings and to significantly reduce calls

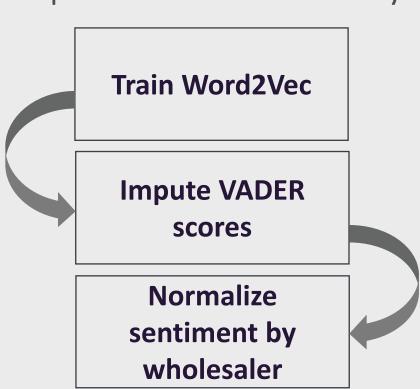


Phase 1: Prepare the Data

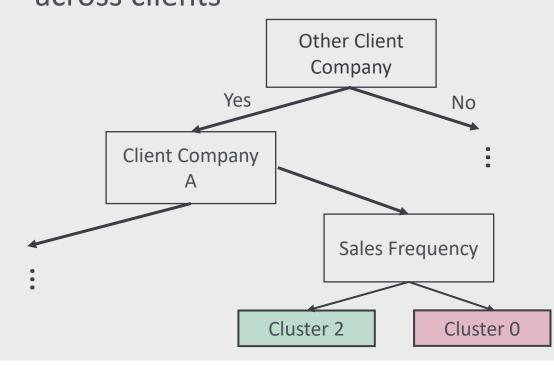
We aggregate sales and interactions by advisor for each quarter



We use pretrained embedding and cater them to our corpus to impute VADER scores for unsupervised sentiment analysis



We perform interpretable clustering to uncover similarities across clients



Phase 2: Predict Interaction Effects

Models

Random Forest (Selected)

- **KNN Regression**
- **Decision Trees**
- **XGBoost**
- Lasso

Main Features

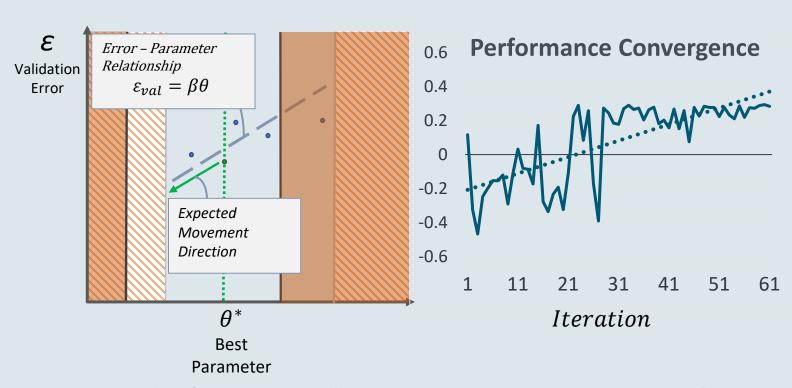
- **Historical Sales**
- Portfolio Returns
- **Interaction Sentiment**
- Interaction Type
- **Interaction Content** (to date)



Out-of-sample performance on the subset of clients for whom we optimize – 1.2 times the performance of the baseline

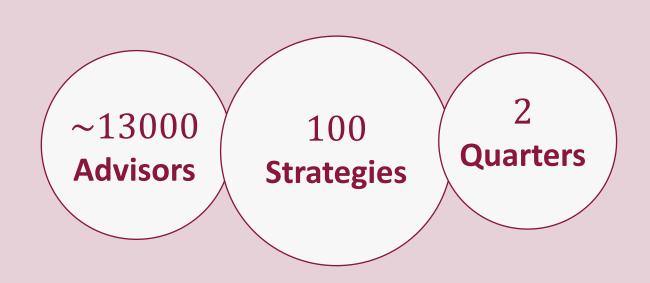
Interpretable Cross validation algorithm

Our algorithm consistently converges to models with better out of sample performance



- 1. Sample from initial grid space parameters values randomly
- 2. After *n* iterations, fit a linear model. Use the coefficients to define in which direction to move
- 3. Stochastically define new grid to be skewed toward the error reducing direction (in expectation)

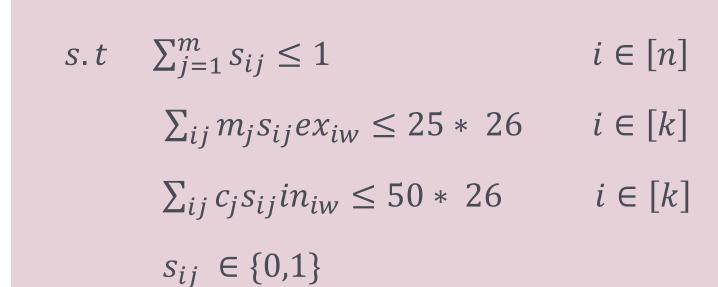
Phase 3: Optimize Strategies



We optimize interaction sequences for 6 months over the top client firm. We select the strategies that most frequently occur and validate them with domain experts

Optimization Formulation

$$\max_{s} \sum_{ij} \left(\sum_{t}^{2} \alpha_{ijt} \right) s_{ij} - \lambda \sum_{ij} m_{j} s_{ij} - \mu \sum_{ij} c_{j} s_{ij}$$



Recommend strategy j with advisor i S_{ij} Predicted sales increase of s_{ij} in period t

 α_{ijt} Number of calls and meetings of strategy *j* c_i , m_i

Mapping of advisor i to wholesaler w ex_{iw} , in_{iw}

Cost of meetings and calls λ, μ