PERFECTING OPTICAL FIBERS

DEEP REINFORCEMENT LEARNING FOR PREDICTIVE CONTROL

Capstone Team: Abhranil Chakrabarti, Arushi Jain

Faculty Advisor: Dr. Brian Anthony

MIT DEVICE

REALIZATION LAB

Project Mentor: Jim Butler

PROBLEM OVERVIEW

PROBLEM CONTEXT

OPTICAL FIBERS The Backbone of Modern Global Connectivity > Thin, flexible strands of glass

- Transmit data through light pulses
- > Based on Total Internal Reflection

Optical Fiber Manufacturing Process

Fiber Extrusion Setup

Pre-processed glass rod (preform) » Furnace » Hair-thin fibers

Industrial Controller

Automates manufacturing process by regulating physical inputs (power/temperature/ speed) to achieve desired output properties

The controller at Sterlite compares the true output diameter with the desired diameter and then controls the inputs accordingly

Problem at Sterlite: Inefficient Control Current solution is unable to maintain the fiber

diameter within the specified range $(125\pm0.1 \text{ microns})$

Required Solution: Smart Controller capable of predicting outputs and taking pre-emptive actions

DATA

METHODOLOGY & RESULTS

PREDICTIVE MODELING – SEQUENTIAL LSTM

Problem: Traditional models (ARIMA, Exponential Smoothing, Prophet) only capture linear and stationary relationships **Solution:** Use Deep Learning-based sequential models (LSTM)

LSTM Experiments:

• Architecture Choice: Vanilla Model is fast and has fewer parameters

PARAMETER OPTIMIZATION – ZIEGLER NICHOLS HEURISTIC

PID Controller

Feedback control algorithm to regulate systems to reach desired setpoints 3 Hyperparameters:

- Proportional (K_n): Acts against current error
- Integral (K_i): Acts against accumulated past errors
- Derivative (K_d). Acts against rate of change in error trends

Existing Controller Network at Sterlite Controls 3 Variables

ALTERNATE CONTROL SYSTEM – REINFORCEMENT LEARNING

Training Setup

- **Problem:** Traditional PID Controller suffers from Linearity Assumptions
- **Solution:** Reinforcement Learning Controller: •
 - ✓ Reward settles to a value close to zero as the model converges
 - ✓ All inputs stay within bounds and follow physics-based constraints
 - ✓ Control (Diameter) Error stays within 0.01 microns (10x better) ☺

- without compromising on performance
- Modeling Choice: Multi-Output Model captures interdependencies between diameter and tension outputs

The Multi-Output Vanilla LSTM model accurately captures diameter trends, achieving a mean absolute percentage error of **0.01%** for diameter and **1%** for tension trends 🕲

- 1. Preform Velocity Controller: Feedback from Diameter (125 microns)
- Capstan Velocity Controller: Feedback from Diameter (125 microns)
- 3. Furnace Power: Feedback from Tension (130 units)

Problem: Huge Search Space 3 PID Controllers x 3 continuous parameters

Solution: Ziegler-Nichols Heuristic

Chooses ideal PID parameters, without navigating entire search space

Environment: LSTM model used to simulate the manufacturing process

Controller	$K_{p_{cr}}(P_{cr}=5)$	$K_p = 0.6 * K_{p_{cr}}$	$K_i = \frac{2 * K_p}{P_{cr}}$	$K_d = 0.125 * K_p * P_{cr}$
Capstan Velocity	8000	4800	1920	3000
Preform Velocity	8	4.8	1.92	3
Furnace Power	80	48	19.2	30

Although simulation outputs are within bounds, the controlled inputs are frequently out of range and violate physics-based constraints and as a result, the **parameters are unusable** 😕

IMPACT AND FUTURE WORK

Built a cutting-edge solution to improve **Optical Fiber Manufacturing Process** utilizing a combination of Long Short-Term Memory (LSTM) Modeling and Reinforcement Learning (RL)

Maintained fiber diameter within an incredibly tight range of 125 ± 0.1 microns on test simulations, providing potential savings of \$1.5 million/month

FUTURE WORK

□ Make the LSTM model more robust by training and re-training across multiple weeks □ Improve identified PID parameters and explore alternate heuristics for optimization □ Thoroughly test the RL-based control system on the physical manufacturing units