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» Thin, flexible strands of glass Funace
» Transmit data through light pulses
» Based on Total Internal Reflection

Monthly Wastage Raw Material | Production Time [ Final Product

Optical Fiber Manufacturing Process [ (@') Target: Maintain Fiber Diameter within 125+0.1 microns

Fiber Extrusion Setup ' Comen.
Pre-processed glass rod (preform) » Furnace » Hair-thin fibers

Industrial Controller - - e

Automates manufacturing process by regulating physical inputs (power/ temperature/

PROBLEM BREAKDOWN

speed) to achieve desired output properties

The controller at Sterlite compares the true output diameter with the desired diameter
and then controls the inputs accordingly
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Problem: Raw Material Wastage

Solution: Develop a Predictive Model of the process for understanding
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Problem: Inefficient Controller Architecture
Solution: Build an alternate Pre-emptive Controller that incorporates
the predictive component and takes anticipatory actions

PREDICTED OUTPUT

5@ input-output relationship )
DESIRED ACTUAL
INPUTS N

OUTPUT 5 ) | OUTPUT _ Problem: Sub-optimal Hyperparameter Settings

' Smart” Controller i Process S I ToTTTTmm e e . T TSttt T T ! Solution: Optimize controller settings based on model predictions in

: Problem at Sterlite: Inefficient Control O N
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Required Solution: Smart Controller capable of
. predicting outputs and taking pre-emptive actions
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ANALYSIS
Cross-Correlations of Inputs with Diameter

DATA DESCRIPTION

PREPROCESSING

Cross-Correlations of Inputs with Tension
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METHODOLOGY & RESULTS

Problem: Traditional models (ARIMA, Exponential Smoothing,
Prophet) only capture linear and stationary relationships
Solution: Use Deep Learning-based sequential models (LSTM)

ALTERNATE CONTROL SYSTEM - REINFORCEMENT LEARNING

PARAMETER OPTIMIZATION - ZIEGLER NICHOLS HEURISTIC

PID Controller

Feedback control algorithm to regulate systems to reach desired setpoints
3 Hyperparameters:

* Proportional (K,): Acts against current error
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*  Problem: Traditional PID Controller suffers from Linearity Assumptions

*  Solution: Reinforcement Learning Controller:

LSTM Experiments:

e Architecture Choice: Vanilla Model is fast and has fewer parameters

v" Reward settles to a value close to zero as the model converges

v" All inputs stay within bounds and follow physics-based constraints
v" Control (Diameter) Error stays within 0.01 microns (10x better) ©

Controller Equation: u(t) = K,e(t) + K; [e(®)d(t) + Ky %

Existing Controller Network at Sterlite Controls 3 Variables RL Controlled Inputs

without compromising on performance
* Modeling Choice: Multi-Output Model captures interdependencies

1. Preform Velocity Controller: Feedback from Diameter (125 microns) 3.5 ;

2. Capstan Velocity Controller: Feedback from Diameter (125 microns)

between diameter and tension outputs 3. Furnace Power: Feedback from Tension (130 units) >0
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Environment: LSTM model used to simulate the manufacturing process
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The Multi-Output Vanilla LSTM model accurately captures diameter ——
trends, achieving a mean absolute percentage error of 0.01% for Velocity 0.015
diameter and 1% for tension trends © Furnace 0.010
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IMPACT AND FUTURE WORK

Built a cutting-edge solution to improve Optical Fiber Manufacturing Process utilizing a
combination of Long Short-Term Memory (LSTM) Modeling and Reinforcement Learning (RL)

Maintained fiber diameter within an incredibly tight range of 125 % 0.1 microns on test
simulations, providing potential savings of $1.5 million/month

FUTURE WORK

O Make the LSTM model more robust by training and re-training across multiple weeks
O Improve identified PID parameters and explore alternate heuristics for optimization
O Thoroughly test the RL-based control system on the physical manufacturing units
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