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1. Background: Lincoln Lab’s Flight Test Facility
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2. Problem: Aerodynamic Analysis Is Expensive

Problem Statement

The time and resources required to assess the aerodynamic properties of new aircraft
prototypes is a significant hurdle during the conceptual design phase when design
parameters are rapidly changing and the opportunity for design impact is highest

Traditional workflow is labor-, computational-, and time-intensive

Step 2: Step 3:
Build high-quality, watertight Run aerodynamic analysis on super-
mesh in O(days) computer aerodynamics in O(days)

Simplify outer mold from
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3. Goal: Accelerate Aerodynamic Analysis

Objective
Improve aerodynamic analysis through an automated workflow, leveraging a machine
learning framework and expanding the current 3D aircraft model training dataset
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4. Solution Part I: Aircraft Data Generation Tool
The Need for a Diverse 3D Aircraft Dataset

e A diverse dataset of aircraft models is necessary to train a generalizable fluids model

* Lincoln Laboratory requires a database representative of most Air Force aircraft

e Certain design parameters are more important to aerospace engineers than others

f Aircraft Geom Generator —-—

Aircraft Geometry Generator

Select vsp3 file:

'ate_aucraft'geometrie'.r’v'.p_flle'./ghder.v'.pS Select Show Plane

Aircraft Geometry Generation Tool

e Takes in any aircraft model (OpenVSP)

 (Can generate 1000’s of new geometries

* Latin hypercube sampling of design parameters
* Can leverage open source community

User Specifications
 GUIl and command line functionality

* Input ranges or a percent variation for critical
aerodynamic parameters

Remeshing feature enables flexibility in

defining object granularit
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Input parameters for generating augmented aircraft geometries

File string: Percent Vanation: Number of samples: Load param ranges from file: Verbose:

Editable Parameter Ranges
it Para Ranges| 1. Fuselage length to average diameter ratio
Generate Geoms

2. Fuselage cross-section shape
Number of remeshed samples:

1 Remesh Geoms J— .
4. Aspect ratio

Taper ratio
Airfoil thickness
Dihedral angle
Twist angle

3. Wing and stabilizer —
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5. Solution Part 11: Using Convolutional Neural
Networks to Predict Aerodynamic Values

Methodology
Y.
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* Voxelize geometry into 3D volume tensor ==
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* Concatenate with flight conditions to
predict aerodynamic quantities

Volume Fraction 0.1

Example Neural Network Architecture 1
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Convolutional Neural Network learns nonlinear relationship between drag for a
given geometry and Mach, Reynolds number, and altitude

Training Process Overview
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*Ground truth aerodynamic values are obtained from simulations on the GPU accelerated
laboratory super computer (90 min each) that require computational meshes (4 min each)

Experiments

* Trained and evaluated models for numerous volume fraction resolutions
* Tested model performance and documented results at different case turbulence tolerances

* Extensive hyper-parameter tuning over various network architectures

6. Impact: Efficient Aerodynamic Analysis

Aircraft
Augmentation Tool

Accelerated Aircraft
Prototyping

Aerodynamic Analysis
Predictions

Time savings:

O(hrs) — O(sec)

 Time savings:

O(days) — O(sec)

— Fuel savings

~ 5000x speed up for
analysis

User friendly &
deployable

__ Greater time-on-
station

Exploration into
previously unconsidered
configurations

98% reduction in
computational cost

 Enables more efficient
designs

/. Multidisciplinary Innovation

e Potential for design optimization
Lincoln

Laboratory

e Approach can be expanded to other
disciplines

e Digital aircraft dataset is widely desirable

e Planning to open source aircraft

Engmeermg augmentation tool

Community * |nterest from multiple research efforts




