Accelerated Aircraft Prototyping Leveraging CNN's

MBAn Student: Cameron Cubra | MIT Faculty Advisor: Jordan Levine Lincoln Laboratory Advisors: Dr. Matthew C. Jones and Justin Rey

1. Background: Lincoln Lab's Flight Test Facility

5. Solution Part II: Using Convolutional Neural Networks to Predict Aerodynamic Values

Methodology

- Voxelize geometry into 3D volume tensor —
- Different resolutions impact input data
- Concatenate with flight conditions to predict aerodynamic quantities

Example Neural Network Architecture

2. Problem: Aerodynamic Analysis is Expensive

Problem Statement

The time and resources required to assess the aerodynamic properties of new aircraft prototypes is a significant hurdle during the conceptual design phase when design parameters are rapidly changing and the opportunity for design impact is highest

3. Goal: Accelerate Aerodynamic Analysis

Objective

Improve aerodynamic analysis through an automated workflow, leveraging a machine learning framework and expanding the current 3D aircraft model training dataset

Convolutional Neural Network learns nonlinear relationship between drag for a given geometry and Mach, Reynolds number, and altitude

Training Process Overview

*Ground truth aerodynamic values are obtained from simulations on the GPU accelerated laboratory super computer (90 min each) that require computational meshes (4 min each)

Experiments

- Trained and evaluated models for numerous volume fraction resolutions
- Tested model performance and documented results at different case turbulence tolerances
- Extensive hyper-parameter tuning over various network architectures

6. Impact: Efficient Aerodynamic Analysis

Aircraft

Aerodynamic Analysis Predictions

Accelerated Aircraft

4. Solution Part I: Aircraft Data Generation Tool

The Need for a Diverse 3D Aircraft Dataset

- A diverse dataset of aircraft models is <u>necessary</u> to train a generalizable fluids model
- Lincoln Laboratory requires a database representative of most Air Force aircraft
- Certain design parameters are more important to aerospace engineers than others

Aircraft Geometry Generation Tool

- Takes in any aircraft model (OpenVSP)
- Can generate 1000's of new geometries
- Latin hypercube sampling of design parameters
- Can leverage open source community

User Specifications

- GUI and command line functionality
- Input ranges or a percent variation for critical aerodynamic parameters
- Remeshing feature enables flexibility in defining object granularity

Editable Parameter Ranges

- 1. Fuselage length to average diameter ratio
- 2. Fuselage cross-section shape
- 3. Wing and stabilizer
- Taper ratio
 Airfoil thickness
- 7. Dihedral angle

Aspect ratio

8. Twist angle

	T TCUICTIONS	rototyping
Time savings: O(hrs) → O(sec)	<pre>_ Time savings: O(days) → O(sec)</pre>	 Fuel savings
User friendly & deployable	5000x speed up for analysis	Greater time-on- station
Exploration into previously unconsidered configurations	Enables more efficient designs	98% reduction in computational cost
Ъ/Г 1∕• 1• • 1•	T 4•	

7. Multidisciplinary Innovation

