

Search Smarter Not Harder: A Personalized Intranet Recommender System

Capstone Team: Sara Darwish and Shay Kaur McKinsey Mentor: Suzana lacob Faculty Advisor: Professor Alexandre Jacquillat

Developing a Personalized Intranet Recommendation System

McKinsey Global Intranet

Personalized Recommendations

spend considerable time and content is the same for everyone access to tools, information and expertise including firm benefits, learning portals, etc..

Increase user engagement

Offer discoverability to less popular intranet webpages

Project Overview

Preprocessing and **Exploratory Data** Analysis

Cleaned, merged and transformed the three data sources into user-webpages clicks matrix

Modeling

Created and deployed baseline; developed 5 candidate recommender system models

Model Choice and Evaluation

Chose final model and evaluated based on quantitative and qualitative metrics

Data Preprocessing, Matrix Formulation, and Data Limitations

USERS

28 features on employees

(role, location, tenure...)

WEBPAGES

focus on subset of well maintained pages **CLICK EVENTS**

9 months click analytics

Merged the 3 Databases

Binary User-Webpage Clicks Matrix

O = User did not click *1* = User click any number of times

DATA LIMITATIONS

Matrix Sparsity 1.6% of 16M matrix elements are non-zero

Implicit Feedback

Frequency of clicks doesn't imply more usefulness

Not Visited (0) ≠ Not useful (pages were not presented)

Exploratory Data Analysis

0-5 5-10 15-20 20-25 25-30 30-35 40-45 45 +

Users' Clicks Distribution

Low Activity

63% of users have a total of < 5 clicks Motivated binary modeling

Visited Content Per Person Type

Assured presence of signal

Motivated **baseline** creation

Baseline Creation and Deployment

To act as an initial assessment point to measure the performance of our recommender system models, a non-machine learning baseline was created and deployed

Baseline Productionalized

RECALL@K = 0.21

Explored the Three Paradigms of Recommender Systems

Tive Candidate Models

User-User

Item-Item

Matrix Factorization

User - Features KNN

(K Nearest Neighbors)

Light Factorization Machines (LightFM)

Recall@K - Main Evaluation Metric

Actual web pages that user X has seen:

Website 1

Website 2

Website 3

Website 4

Website 5

Website 6

Website 7

Website 8

Website 9

Website 10

Recall@K - Main Evaluation Metric

Actual web pages that user X has seen:

Website 1

Website 2

Website 3

Website 4

Website 5

Website 6

Website 7

Website 8

Website 9

Website 10

Our Model Output:

Website 1 Website 5 Website 6 Website 11 Website 7

Recall@K - Main Evaluation Metric

Actual web pages that user X has seen:

Website 1

Website 2

Website 3

Website 4

Website 5

Website 6

Website 7

Website 8

Website 9

Website 10

Recall@K (True Positive Rate @K)

= out of the total # of webpages that the model gave how many has the user visited

do that per user and get average

Modeling Approach - Model 1 - 3

Models 1 - 3 are based on KNN and differ in the similarity metric used

Modeling Approach - Model 4 and 5

decomposing the sparse user-item binary matrix into a product of two lower dimensional ones representing the user and item embeddings

RECALL@K Test = 0.28

Collaborative Filtering (Matrix Factorization)

Content-based (user-features)

RECALL@K Test = 0.34

Deep-dive on Chosen LightFM Model^[1]

Leverages clicks + features

Ensemble nature deals well with sparsity and implicit feedback

STEP 1: Incorporating Features in Embeddings

	CSP	ESP	FSP
User 1	1	0	0
User 2	0	0	1
User 3	0	1	0

User Feature Matrix

Consulting Operations CSP 0.1 0.9 ESP 0.8 0.2 FSP 0.9 0.1

User Features in **Terms of User Latent Features**

Χ

STEP 2: Matrix Factorization

X

User Embeddings

Item Embeddings

[1] Kula, Maciej, Metadata Embeddings for User and Item Cold-start Recommendations, 07 2015.

Highest Recall@K

Tackles cold start for new and inactive users

	Consulting	Operations
User 1	0.9	0.1
User 2	0.1	0.9
User 3	0.2	0.8

Illustration on subset of user features - the same is done for item features

User Embeddings

Predictions

Thank You!

Model 1 - User- User Collaborative Filtering

	McKinsey Translator	Rydoo	My Benefits (US)	Self Serve	Growth, Marketing
Jennifer	?	1	1	1	1
Suzana	1	1	0	1	1
Matt *most similar to Jennifer	0	1	1	1	1
Andrej	1	0	0	0	1

Model 1 - User- User Collaborative Filtering

	McKinsey Translator	Rydoo	My Benefits (US)	Self Serve	Growth, Marketing
Jennifer	0.9	1	1	1	1
Suzana	1	1	0	1	1
Matt	0	1	1	1	1
 Andrej	1	0	0	0	1

Model 2 - Item-Item Collaborative Filtering

	McKinsey Translator	Rydoo	My Benefits (US)	Self Serve	Growth, Marketing
Jennifer	?	1	1	1	1
Suzana	1	1	0	1	1
Andrej *most similar to Jennifer	0	1	1	1	0
Matt	1	0	0	1	1

Model 2 - Item-Item Collaborative Filtering

	McKinsey Translator	Rydoo	My Benefits (US)	Self Serve	Growth, Marketing
Jennifer	0.7	1	1	1	1
Suzana	1	1	0	1	1
Andrej *most similar to Jennifer	0	1	1	1	0
Matt	1	0	0	1	1

	Person Type	Job Category Code	Department	Office
Jennifer	Non Partner	FSP	T&D Internal Engagement	New York
Suzana *most similar to Jennifer	Non Partner	FSP	T&D Internal Engagement	Waltham
Andrej	Non Partner	FSP	T&D Internal Engagement	Prague
Matt	Partner	CSP	Consulting	Cairo

	Person Type	Job Category Code	Department	Office
Jennifer	Non Partner	FSP	T&D Internal Engagement	New York
Suzana	Non Partner	FSP	T&D Internal Engagement	Waltham
Andrej	Non Partner	FSP	T&D Internal Engagement	Prague
Matt	Partner	CSP	Consulting	Cairo

Nearest Neighbors	1	2	3	4	5
Value for Webpage 1 (x)	0	0	1	1	0
Cosine Similarity (y)	0.2	0.4	0.8	0.4	0.2
x * y	0	0	0.8	0.4	0 —

0+0+0.8+0.4+0 / 5 = 0.24 → Prediction for User 1 Webpage 1 Interaction

Deep dive on Matrix Factorization

- Quick Recap: Model 2 &3 predicts based on interaction of users and items independently and matrix factorization does this concurrently
- The user x webpage matrix approximated by a combination of two matrices of lower dimension
- The preferences of a user and item can be represented by a small number of hidden factors --> embeddings

	Concur	Rydoo	GHD			ltem
Suzana	1	1	1	0	~	
Jennifer	1	1	0	0		lt a sec
Andrej	0	0	1	1		embedo
	0	1	0	0		matri

Deep dive on Matrix Factorization

Items

	Concur	Rydoo	GHD
Suzana	1	1	1
Jennifer	1	1	0
Andrej	0	1	1

User Embeddings

		"Travelling & Expense"	"User Support"
s	Suzana	0.6	0.4
Use	Akshata	0.8	0.2
	Andrej	0.5	0.5

- Say we have k hidden factors
- and 40% user support website)

• Then for each user those hidden factors represent characteristics about the user (e.g Suzana may have 60 % liking towards traveling and expense

• Similarly, the hidden factors for webpages may be how much the webpage - Concur relates to the category "Traveling and Expense"