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Developing a Personalized Intranet Recommendation System
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Global Intranet
ﬁ Personalized
= Recommendations
“ n ................... > —
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and content is the same including firm benefits, learning portals, etc..
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Increase user engagement

Oftter discoverability to less
popular intranet webpages



Project Overview

Preprocessing and

Exploratory Data Cleaned, merged and transformed the three data sources into user-webpages clicks matrix
Analysis
Modeling Created and deployed baseline; developed 5 candidate recommender system models
Model Choice and

: Chose final model and evaluated based on quantitative and qualitative metrics
Evaluation



Data Preprocessing, Matrix Formulation, and Data Limitations
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Exploratory Data Analysis

Users' Clicks Distribution
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63% of users have a total of < b clicks
Motivated binary modeling
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Baseline Creation and Deployment

To act as an initial assessment point to measure the performance of our recommender system models,
a non-machine learning baseline was created and deployed
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Baseline Productionalized 7% 5 K Clicks Per Week



Explored the Three Paradigms of Recommender Systems

@7 Five Candidate Models
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Recall@K - Main Evaluation Metric

Actual web pages that user X has seen:

Website 1
Website 2
Website 3
Website 4
Website 5
Website 6
Website 7
Website 8
Website 9
Website 10



Recall@K - Main Evaluation Metric

Actual web pages that user X has seen: Our Model Output:
Website 1 Website 1
Website 2 Website 5
Website 3 Website 6
Website 4 Website 11
Website 5 Website 7
Website 6
Website 7
Website 8
Website 9

Website 10



Recall@K - Main Evaluation Metric

Actual web pages that user X has seen: Our Model Output: Recall@K (True Positive Rate @K)
:Vvebs,lte : Webs.lte : = out of the total # of webpages that the
ebsite 2 : Website 5
Website 3 Website 6 model gave how many has the user visited
Website 4 Website 11 ;
Website 5 Website 7 4
Website 6 1 e — 0.8
Website 7 5
Website 8
Website 9 do that per user and get average

Website 10



Modeling Approach - Model 1 - 3

User-User
Collaborative Filtering

Visited by both users

Similar Users
(in terms of clicks)
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Visited by her, recommended to him!

RECALL@K = 0.21

Item-Item
Collaborative Filtering

User- Features

Users Interacted with both similarly Have similar demographics

~ ~n M
o248

Similar Items
(in terms of clicks)

2 — 2

Item Visited

Similar Users
(in terms of features)
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by User @ /

Recommend red page to user

Visited by her, recommended to him!

RECALL@K=0.12 RECALL@K=0.3

Models 1 - 3 are based on KNN and differ in the similarity metric used

KNN (K Nearest Neighbors)



Modeling Approach - Model 4 and 5

Matrix Factorization

Original Matrix ~ User Embeddings  Item Embeddings

webpages

1 1

1 1

users

N
X

mxn mx| Ixn

decomposing the sparse user-item binary matrix into a product of two
lower dimensional ones representing the user and item embeddings

RECALL@K Test =0.28

Light Factorization Machines (FM)

Collaborative Filtering (Matrix Factorization)

1 1

1 1

Q
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Content-based (user-features)

RECALL@K Test =0.34

.’ﬁ 80% better than baseline



Deep-dive on Chosen LightFM Model

[1]

v~ Leverages clicks + features

/ Ensemble nature deals well with
sparsity and implicit feedback

STEP 1:
Incorporating Features
in Embeddings

STEP 2:
Matrix Factorization

v Highest Recall@K

Tackles cold start for new and
Inactive users

CSP ESP FSP
User 1 1 0 0
User 2 0 0 1
User 3 0 1 0

User Feature Matrix

User Embeddings

[1] Kula, Maciej, Metadata Embeddings for User and Item Cold-start Recommendations, 07 2015.

Consulting | Operations Consulting | Operations
CSP 0.9 0.1 User 1 0.9 0.1
ESP 0.2 0.8 = | user2 0.1 0.9
FSP 0.1 0.9 User 3 0.2 0.8
User Features in U .
ser Embeddings
Terms of User Latent Features g
Item Embeddings Predictions

lllustration on subset of
user features - the same
is done for item features



Thank You!



Model 1 - User- User Collaborative Filtering

McKinsey Rydoo My Benefits Self Serve Growth,
Translator (US) Marketing
? 1 1 1 1

Jennifer

Matt 0 1 1 1 1
*most similar to
Jennifer




Model 1 - User- User Collaborative Filtering

McKinsey Rydoo My Benefits Self Serve Growth,
Translator (US) Marketing
0.9 1 1 1 1




Model 2 - Item-Item Collaborative Filtering

McKinsey Rydoo My Benefits Self Serve Growth,
Translator (US) Marketing
? 1 1 1 1

Jennifer

Andrej 0 1 1 1 0
*most similar to
Jennifer




Model 2 - Item-Item Collaborative Filtering

McKinsey Rydoo My Benefits Growth,

Translator (US) Marketing
Jennifer 0.7 1 1 1 1
“ | | | | |

Andrej 0 1 1 1 0

*most similar to
Jennifer




Model 3 - User- Features KNN

Person Type Job Category Department Country

McKinsey
Code

Translator

Jennifer Non Partner FSP T&D Internal New York United States 2

Engagement
Suzana Non Partner FSP T&D Internal Waltham United States 1
*most similar to Engagement :
Jennifer
Non Partner FSP T&D Internal Prague Czech Republic 0
Engagement ;

“ Partner CSP Consulting Cairo Egypt 1



Model 3 - User- Features KNN

Person Type Job Category Department Country McKinsey
Code 5 Translator
Jennifer Non Partner FSP T&D Internal New York United States 0.8
Engagement
Non Partner FSP T&D Internal Waltham United States 1
Engagement :
Non Partner FSP T&D Internal Prague Czech Republic 0
Engagement :

Partner CSP Consulting Cairo Egypt 1



KNN Model Calculation

Nearest 1 2 3 4 5
Neighbors
Value for 0 0 1 1 0
Webpage 1 (x)
Cosine 0.2 0.4 0.8 04 0.2
Similarity (y)
Take
x*y 0 0 0.8 04 0 » mean of
this

0+0+0.8+0.4+0 / 5 = 0.24 - Prediction for User 1 Webpage 1 Interaction



Deep dive on Matrix Factorization

e Quick Recap: Model 2 &3 predicts based on interaction of users and items independently and matrix factorization
does this concurrently

 The user x webpage matrix approximated by a combination of two matrices of lower dimension

» The preferences of a user and item can be represented by a small number of hidden factors --> embeddings

Concur Rydoo

User embedding matrix

Suzana

Jennifer

U

) Items X
Andrej embedding
matrix




Deep dive on Matrix Factorization

Users

Suzana

Jennifer

Andrej

Users

e Say we have k hidden factors

e Then for each user those hidden factors represent characteristics about

the user (e.g Suzana may have 60 % liking towards traveling and expense
and 40% user support website)
User Embeddings

“Travelling “User e Similarly, the hidden factors for webpages may be how much the

& Expense”  Support”

Suzana webpage - Concur relates to the category "Traveling and Expense”

Akshata

Andrej




