

Search Smarter Not Harder

A Personalized Intranet Recommender System

Faculty Advisor: Alexandre Jacquillat MBAn Team: Sara Darwish & Shaleenraj Kaur

I. PROBLEM STATEMENT

A consulting firm's Global Intranet is a resource that is used by employees to have easy access to tools, information and expertise including firm benefits, learning portals, etc.

The central objective of this project is to develop a personalized intranet recommendation system to

increase user engagement

II. DATA PROCESSING & MATRIX FORMULATION

USERS

28 features on employees

(role, location, tenure...)

WEBPAGES

focus on subset of well

maintained pages

Binary User-Webpage Clicks Matrix

448 Webpages

Merged 3 Databases

CLICK EVENTS

9 months click analytics

DATA LIMITATIONS

Matrix Sparsity

only 1.6% of 16M interactions are non-zero

Implicit Feedback

Frequency of clicks doesn't imply more usefulness

Not Visited (0) ≠ Not useful (pages were not presented)

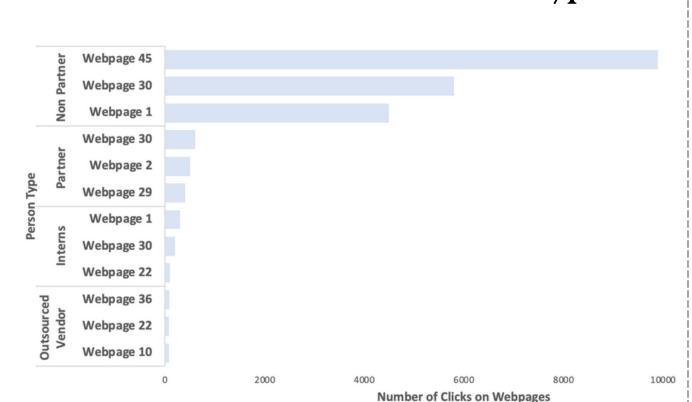
offer discoverability to less popular intranet webpages

III. EXPLATORY DATA ANALYSIS

Users' Clicks Distribution Visited Content Per Person Type **0-5** Webpage 30 **5-10** Webpage 1 Webpage 30 **15-20 20-25** 63 % **25-30** Webpage 1 **30-35** Webpage 30 Webpage 22 **40-45** Webpage 36 **45** + Webpage 22 Webpage 10

Low Activity

63% of users have a total of <5 clicks --> motivated binary modeling



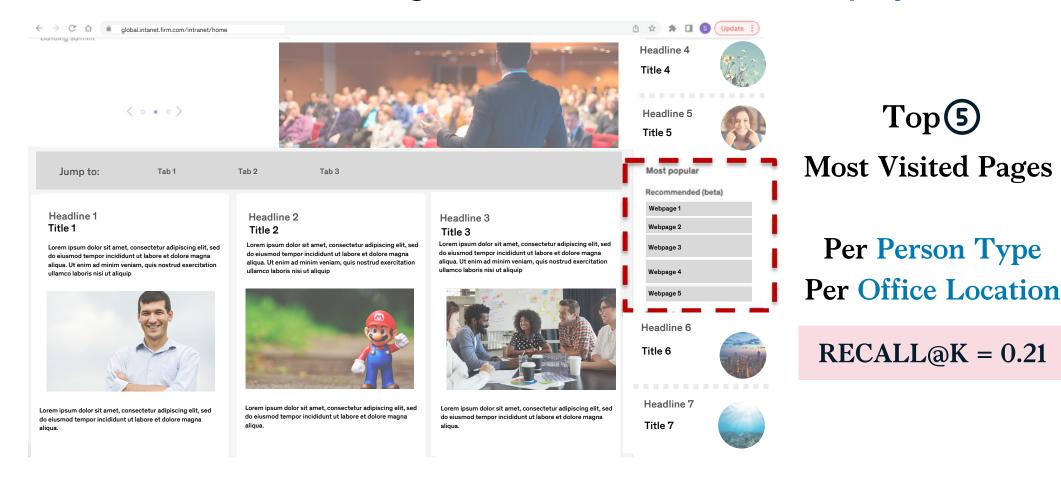
Assured presence of signal

Motivated baseline creation

IV. BASELINE CREATION & DEPLOYMENT

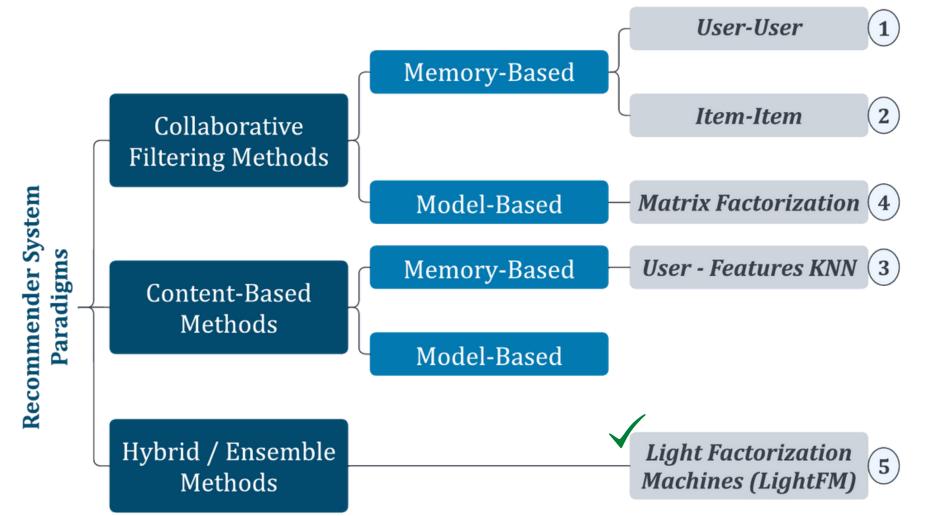
To act as an initial assessment point to measure the performance of our recommender system models,

a non-machine learning baseline was created and deployed



V. RECOMMENDER SYSTEM MODELING

Five Candidate Models



Q Deep-Dive On Chosen Model - LightFM^[1]

Tackles cold start for new Leverages clicks + features and inactive users

Ensemble nature deals well with sparsity and implicit feedback

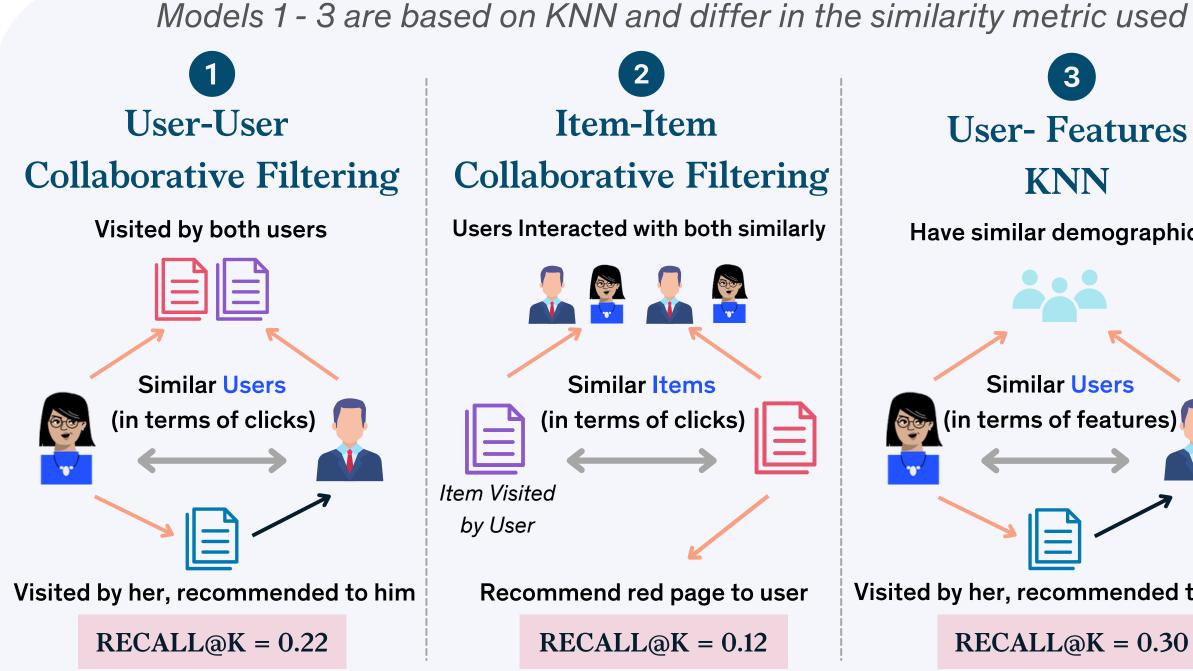
Highest Recall@K

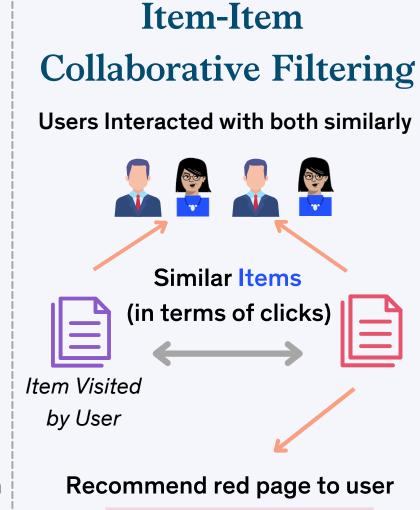
STEP 1: Incorporating Features in Embeddings

Illustration on subset of user features - the same is done for item features

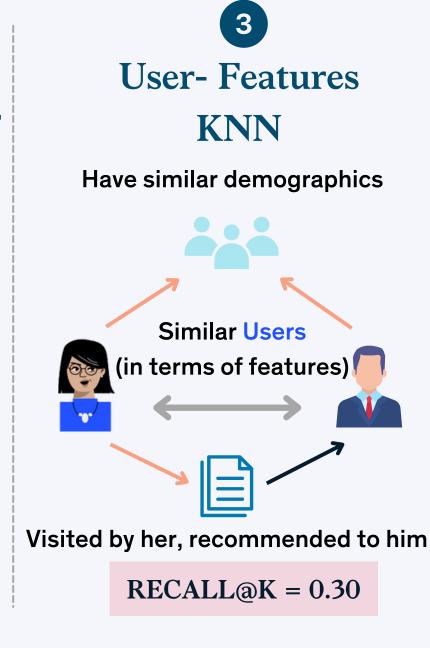
	CSP	ESP	FSP			Consulting	Operations			Consulting	Operations
User 1	1	0	0	*	CSP	0.9	0.1	=	User 1	0.9	0.1
User 2	0	0	1		ESP	0.2	0.8		User 2	0.1	0.9
User 3	0	1	0		FSP	0.1	0.9		User 3	0.2	0.8
		tures in atent Feat	ures	l S	Jser Emb	eddings					

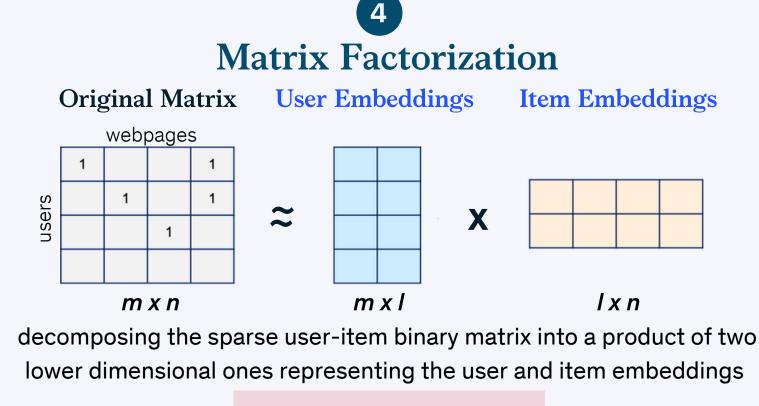
STEP 2: Matrix Factorization





RECALL@K = 0.12





RECALL@K Test = 0.28

Recall@K (True Positive Rate@K)

Out of the total number of webpages that the model gives (k=5), how many has the user actually visited

