NORDSTROM

Ahmed El Aamrani – Dao Ming Lee

Massachusetts Institute of Technology – Operations Research Center

Results

Running both LIDO and SMRT, we obtained the optimal transfers from SSA to each store (Flagship & Men's) for each delivery and summarized the key results.

Transfers

Cost

■ Holding cost ■ Lost sales ■ Transport

Transportation	Delivery capacities, transportation cost estimates (Transportation dept)
Product specifications	SKU volumes, Product lifecycle (Product dept)

MANAGEMENT

SLOAN SCHOOL

Customer Fulfillment Rate (CFR)

Customer Fulfillment Rate	Percentage of customer demand met by immediate stock availability Absence of stockout/lost sales
Comparison	SMRT 99.7%
	LIDO 99.0%
Trade-off	Vast reduction of inventory levels generates minimal increase in stockouts

Sensitivity Analysis

Varying cost parameters (e.g. average cost, product lifecycle) would have a profound impact on the daily cost due to the outsized proportion of holding cost.

However, focus is on the effect of parameters whose data was entirely unavailable as there is greater uncertainty about their true values.

Minimum presentation targets (MPT) • Initial MPT is an upper bound on the actual value. • We repeated the simulation with 60% and 80% of the estimated targets. • The lower the minimum presentation target,

the lower holding cost decreases to before it plateaus. without affecting CFR.

Forecast accuracy

- We ran simulation using Mean Absolute Percentage Error of 10% and 40%.
- The results were robust with <3% variation in transfers and cost.
- Small variations as a result of ceiling the weighted NY demand using store and period sales percentages.

Methodology

Workflow

<u>Preprocessing</u>

Model assumptions

Parameter	Explanation	
Demand	Actual sales +/- 20% (Estimated forecast accuracy) Intraday Allocation: Historical sales %	
Cost	Holding cost = Cost of good / (3 * Product Lifecycle)	
Fixture capacities	Max stock-on-hand during previous month at <u>Store/Div/Subdiv/Dept/Class</u> level	
Min. Presentation Targets (MPT)	Min stock-on-hand during previous month at <u>Store/Div/Subdiv/Dept/Class</u> level	

Optimization – Local Inventory Deployment Optimization (LIDO)

 $\min \sum_{c \in C} \sum_{t \in T} (P_c \alpha_{c,s,t} + Q_c / L_c * \beta_{c,s,t}) + \sum_{f \in F} (R_f * \sum_{t \in T} \delta_{f,t})$

- P_c : Profit per unit of deptclass c sold
- Q_c : Holding cost for deptclass c
- L_c : Product lifecycle for deptclass c
- $\alpha_{c.s.t}$: No. of class c units short in store s at (beginning of) time t •
- $\beta_{c,s,t}$: No. of deptclass c units short in store s at (beginning of) time t •
- R_f : Cost of truck delivery for forward deployment center f
- $\delta_{f,t}$: No. of shipments from center f during period t

Constraints

- Network: Transportation schedule, truck capacity
- Store: Fixture capacity, minimum presentation targets

Simulation

Parameters

- Duration: 2-29 February 2020
- Centers: NJ Stock Staging Area (209)
- Stores: NYC Flagship (210) & Men's Only (212)

Subroutine

LIDO	SMRT
If SOH < Sales: lost sales	If target level < Sales: lost sales
If SOH > Sales: holding cost	If actual SOH > Sales: holding cost
Simulated end-of-day SOH for 2 Feb = Simulated start-of-day SOH 3 Feb	Actual SOH

Profit

- Nordstrom associates a Customer Lifetime Value and profit is a lower bound on penalty of a stockout.
- We repeated the simulation with 2x profit.
- Results were robust to these perturbations, with <3% variation in transfers, cost and CFR.

Conclusion

	SMRT	LIDO
Cost	\$205k;	\$182k;
	Dependent on user-defined targets	Model-recommended optimal transfers
Customer Fulfillment Rate	99.7%	99.0%
Framework integration	Independent; Reactive	Integrative; Proactive
Workload	Manual	Automated
Generalizable	No	Yes

Acknowledgements

We would like to thank MIT and Nordstrom for their support throughout the project. We would like to especially thank James Pestrak (Principal Data Scientist at Nordstrom) for his constant support and guidance, as well as Dr. Georgia Perakis for her invaluable expertise on inventory deployment.

We would also like to thank Brian Trinen, Michelle Li, Carine Simon, Divya Singhvi, Ioannis Spantidakis and Cherryleen Montemayor for their assistance and encouragement.