15.089: ANALYTICS CAPSTONE MINIMIZING VACCINE VARIANCE

Kyle Mana and Ryan Trusler Faculty Advisor: Daniel Freund

AGENDA

01 Background & Scope

Project Scope and Aims

02 Modeling Supply Chain

• Digitizing supply chain flows

03 Optimization

• Formulation and impact

04 User Interface

- Platform and interface
- Design

05 Impact

- Cost savings
- Time savings

BRAND BACKGROUND

Prevenar Brand

- Pneumococcal conjugate vaccine
- Used across infants, children and adults
- Given as a four-dose vaccine for children under 6 and as a single does otherwise
- Regionally "Prevnar" in North America
- Opportunity within Prevenar
 - Global brand with presence in markets in 6 continents
 - With a partnership with UNICEF, the brand is used in virtually every country worldwide
 - World's most used vaccine before COVID
 - \$5.95 billion in sales in 2020

OUR SCOPE

Currently: Brand managers use excel-based tools to evaluate brand health and long-term plans

These tools are fragile, memory intensive, and rigid

Re-evaluating inventory plans for different scenarios and strategies is a time-intensive exercise

Each tool requires manual data extracts from 2+ data sources

Heuristics such as "round-up" ordering policies are used to plan inventory

Offer a robust, stable, and fit-for-purpose interface for brand reporting and planning

Develop a tool that can generalize to any brand, and any network

Allow for quick "what-if" scenario planning across multiple forecasts

Reduce the overhead required to perform these analysis using automation

Thoughtfully insert optimization in the place of heuristics

Graph representation of supply chain

- Nodes represented as product/location pairs
- Demand is pulled down the supply chain by the terminal nodes (leaves)
- Genealogy used to create a "digital twin" of the supply chain
 Bound-up Strategy:

Round-up Strategy:

FXX: GCX2 FXX' TRANSIT Queue BEX7 BEX1 USX0 FXX Worker BEX7 BEX1 JSX(

OPTIMIZATION - FORMULATION

Minimize a weighted combination of inventory and deviation from target inventory Subject to:

- Flow Constraint: Inventory at a node must equal starting inventory plus flows in, minus flows out
- Satisfy Demand: Always satisfy demand at the terminal nodes
- *Inventory Threshold:* Never drop below a specified percentage of the target inventory
- **Target Inventory:** Equal to the inventory required to satisfy demand over the desired cycle time (considering lead times, manufacturing times and safety stock)

OPTIMIZATION – WARM START

- Solving the optimization un-aided was deemed intractable (12 min run-time limits)
- We implemented two warm-start heuristics to provide feasible integer solutions
 - 1. The current round-up method
 - 2. A greedy optimization, which makes the best decision at a single node moving up the graph
- Benefits: faster optimization by giving the solver a strong target to "do better than"

	Cold Start	Round-up Warm	Greedy Warm
Time	Gap %	Start Gap %	Start Gap %
(0	61.5	48.2
10	98.9	28.8	30.1
20	0 98.1	25.6	26.7
30	97.7	22.3	23.8
40	0 97.5	21	23.1
50	97.4	20.4	22.9
60	97.3	20.1	22.8
70	96.6	20	22.6
80	0 94.4	19.8	22.4
90	94.3	19.7	22.3
100	94.3	19.6	21.7
110	94	19.5	21.6
120	0 93.7	19.4	21.5

6

OPTIMIZATION - RESULTS & IMPACT

Our weekly optimization identifies opportunity to reduce planned inventory by

+11%

which translates to annual savings of

for the Prevenar brand

We enable frictionless evaluation of inventory health across several inventory strategies

Brand managers get time back, all while planning to a higher level of detail

Before	After
Several manual data pulls per analysis	Automated data pipeline
Monthly granularity	Weekly or monthly granularity
Rigid round-up ordering policy	Round-up, greedy, and optimized policies
Repeat entire process per scenario	Compare hundreds of scenarios at once

THANK YOU

MIT Sloan School of Management 50 Memorial Drive, E52-359 Cambridge, MA 02142 USA 617-258-5434 sfadmissions.mitsloan@mit.edu

A REAL PROPERTY.

APPENDIX

OPTIMIZATION - FORMULATION

$$\begin{split} \min_{\alpha,\sigma,\omega} & \sum_{d,n} \alpha_{dn} (1-\lambda)\theta + \sigma_{dn}\lambda \\ \text{s.t.} & s_n + \sum_{t=0}^d \sum_{j:(j,n)\in\mathcal{A}} \omega_{tjn} u_n - \sum_{t=0}^d \sum_{j:(n,j)\in\mathcal{A}} \omega_{tnj} u_j = \sigma_{dn} \quad \forall d \in D, \forall n \in N \setminus Sink \end{split}$$

$$\begin{aligned} & (2) \\ & \sum_{j:(j,n)\in\mathcal{A}} \omega_{djn} u_n = f_{dn} & d \in D, \forall n \in Sink \end{cases} \\ & \sigma_{dn} \geq K_{dn} e_n & \forall d \in D, \forall n \in N \end{cases}$$

$$\begin{aligned} & \alpha_{dn} \geq K_{dn} - \sigma_{dn} & \forall d \in D, n \in N \end{cases}$$

$$\begin{aligned} & (4) \\ & \alpha_{dn} \geq -(K_{dn} - \sigma_{dn}) & \forall d \in D, n \in N \\ & (5) \end{aligned}$$

$$\begin{aligned} & K_{dn} = \sum_{j:(n,j)\in\mathcal{A}} \sum_{t=d+1}^{d+c_{dn}} \omega_{tnj} u_j & \forall d \in D, n \in N \setminus Sink \end{aligned}$$

 $\omega_{djn} \in \mathbb{Z}_+, \alpha_{dn} \in \mathbb{R}_+, \sigma_{dn} \in \mathbb{R}_+$

(6)

Graph representation of supply chain

- Nodes represented as product/location pairs
- Demand is "pulled" down the supply chain by the terminal nodes (leaves)

- Initialize a queue od nodes to visit with terminal nodes
- Add a node to the queue only after all its children have been visited

Graph representation of supply chain

- Nodes represented as product/location pairs
- Demand is "pulled" down the supply chain by the terminal nodes (leaves)

- Initialize a queue od nodes to visit with terminal nodes
- Add a node to the queue only after all its children have been visited

Graph representation of supply chain

- Nodes represented as product/location pairs
- Demand is "pulled" down the supply chain by the terminal nodes (leaves)

- Initialize a queue od nodes to visit with terminal nodes
- Add a node to the queue only after all its children have been visited

Graph representation of supply chain

- Nodes represented as product/location pairs
- Demand is "pulled" down the supply chain by the terminal nodes (leaves)

- Initialize a queue od nodes to visit with terminal nodes
- Add a node to the queue only after all its children have been visited

CAPITAL COST SAVINGS

• With fixed inventory threshold of 70% and risk tolerance of 0.5

Working Capital Cost Savings (\$ Millions)

