Adoption Unleashed Deep Dive into User Behavior and Network Patterns

Project Sponsors: Abby Garrett, Grace Garbrecht, Kim Adler

Faculty Advisor: Dr. Daniel Freund

Capstone Students: Shreya Gupta, Sri Reddy

1.PROBLEM STATEMENT

Pfizer Global Supply – Operations & Insights team has deployed multiple analytical tools to enable operational efficiencies in drug manufacturing process.
Solution owners need an automated way to:
A. Define user adoption B. Find target audience
C. Know what actions will increase adoption

2. OBJECTIVES

Define criteria to qualify a user as an adopter of tool

Build predictive models to forecast user likelihood of adoption and understand factors driving tool adoption

3. DATASET		
Usage activity across tools	KnowledgeGraph of people and process at Pfizer	Batch activity across sites

50bn doses annually

36 tools in production

20k users across tools

4. METHODLOGY

Phase 1: Defining User Adoption Criteria

We *cluster users based on their usage behavior* over weeks and find target clusters for each user based on their characteristics (role, hierarchy, type of site)

Phase 2: Predictive Modeling

We utilize multiple *logistic regression discrete time series survival models* to predict adoption status, with unique goals for each model

Model 1. Predicting future adoption status from individuals' own usage metrics

Features: Usage metrics (days accessed/time spent on tool) summarized over 24 weeks

Outcome: Predict adoption status 5-8 weeks out in the future with 96% of test set accuracy (baseline 86%)

- Conversion list of non-adopters to
- potential adopter if given a push

Model 2. Network effect on user adoption status

Maintenance List of current adopters who are prone to losing adopter status

Model 3. Find most influential users in network

Bin users by degree of connectedness and find proportion of bin that used tool >10 minutes in corresponding week

Outcome: Network metrics can predict user adoption status with 88% test set accuracy

Outcome: Lower degree users in network are more predictive of adoption status. Model has test set AUC 0.7 and accuracy 87%

5. RESULTS & IMPACT

Takeaway: Conversion of lower degree network members into users can increase tool adoption rates **Impact:** Deviation from Release Attainment time (RA: planned time to ship for batch) at sites can be reduced by increasing adoption of Batch Tracker. Batch Tracker usage and RA deviation had an average correlation –0.3 at 4 large sites

6. NEXT STEPS

- Explore other network representations based on data availability
 - Process Centric Teams (PCTs)
 - Shift reporting structure
- Seek out "connection" data to model network on, i.e. number of emails, Teams messages, meeting data