

Claire-Alix

Saillard

Ananya

Krishnan

Professor Alexandre Jacquillat

PURPOSE DRIVEN SUPPLY CHAIN:

A PRESCRIPTIVE APPROACH TO SUSTAINABILITY

Maintaining REI's commitment to environmental sustainability in supply chain

Problem Statement

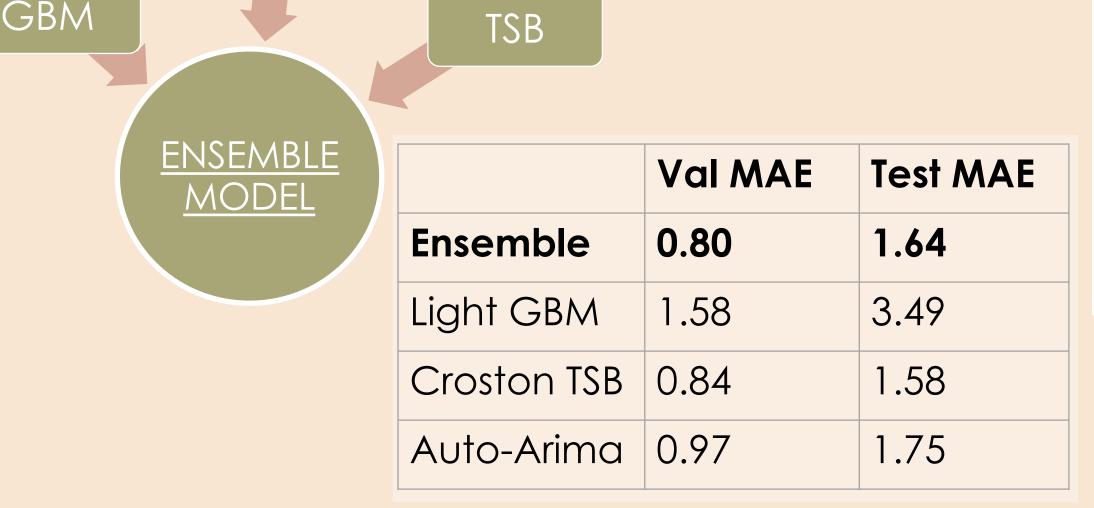
How do we **predict weekly in-store demand** of <u>BIKES</u>, <u>BOATS & BOXES</u> and accordingly **optimize** the REI supply chain to minimize operational costs and limit environmental impact?

2019 2020 2021 Data 14000 12000 Sales **Events** Strong **Geographic Sales** Trends Strong **Seasonal Sales** Trends

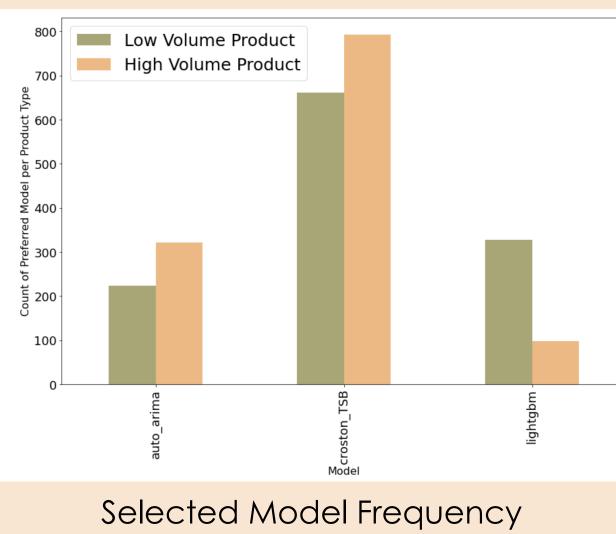
Feature Engineering to recover sales trends

End to End Approach

Location


In-Sample Data 🔷 Demand Prediction

Optimization Shipment & Store Inventory Quantity Out of Sample **Actual Demand** Actual Unsatisfied Demand **Actual Cost**


Demand Forecasting

LIGHT GBM Features Cumulative sum of units in <u>class</u> sold within the year in each store Cumulative sum of units in <u>class</u> sold within the year in each Zip1/Zip2/Zip3 Average of past week's sales of <u>class</u> in each Average of past 3 week's sales of class in each store Average of past 5 week's sales of class in each store Previous year sales of <u>class</u> in the same fiscal Number of company wide events/promotions during that fiscal week

How many units of product class <u>c</u> will be purchased at store <u>s</u> on week <u>w</u>?

Croston

Optimization

Can we find optimal routes and truck loading to minimize cost and distance traveled?

Objective Transportation Constraints

Minimization

Full-Truck Load Less-than-Truck Load Cost of Transportation Cost Unsatisfied Demand

Auto-

Arima

Light

- 1. Each truck on a particular route can be an LTL or FTL
- 2. Quantity sent on a route doesn't exceed truck capacity

Inventory & Capacity Constraints

- 1. Items sent to a store + Current Inventory <= Capacity
- 2. Store inventory is balanced weekly based on sales
- 3. DC inventory is balanced weekly based on shipment

Sales Constraints 1. Sales + Unsatisfied Demand = Forecasting Demand

Use of Optimization With:

- Route Optimization
 - o Baseline Routes (Inspired from practice)
 - Optimized Routes
- Optimization of operations based on demand:
 - Perfect Information
 - Forecasts
 - Last Year So
- Integration
 - Two-Stage
 - o One-Stage

ales	· v			
Opt Opt				
			•) (

Demand Scenario	Optimized Routes (1-Stage)	Optimized Routes (2-Stage)	Baseline Routes (2-Stage)
Perfect Information	\$300,545	\$301,661	\$302,786
Ensemble Predictions	\$1,250,280	\$1,251,512	\$1,267,118
Last Year Sales	\$1,446,542	\$1,446,897	\$1,459,020

Demand Scenario	Optimized Routes (1-Stage)	Optimized Routes (2-Stage)	Baseline Routes (2-Stage)
Perfect Information	1,183,738 miles	1,267,127 miles	1,733,962 miles
Ensemble Predictions	1,339,258 miles	1,213,922 miles	1,946,641 miles
Last Year Sales	1,276,050 miles	1,302,374 miles	1,975,534 miles

13.5%

decrease in operational costs 37%

decrease in transportation miles and carbon emissions