

Is it Elastic? Inflation, Problematic. Prices, Automatic.

A MODEL BASED APPROACH TO DECOMPOSE SALES SIGNALS AND ESTIMATE SALES CHANGE GIVEN PRICE

Faculty Advisor: Thodoris Lykouris, Ph.D | Unilever Leads: Syed Haider Ph.D, Zeya Luo, Saloni Mishra | MIT Team: Rahul Kasar, Jay Li

REDUCED DOLLAR ERROR OF SALES PREDICTIONS BY \$5 MILLION AFTER **PRICE CHANGES**

SALES BREAKDOWN FOR OVER **20000 TIME SERIES INTO SEASONAL AND MACROECONOMIC FACTORS**

A 14% INCREASE IN ACCURACY FROM MODEL COMPARED TO PREVIOUS ESTIMATES OF **ELASTICITY**

MOTIVATION

Problem

Unprecedented inflation has led to necessary price increases.

Goal: Find Elasticity

1% increase in Price ? % change in Demand

Business Impact

Accurate Elasticities

Informed **Price Change**

Increased **Sales Revenue**

DATASETS USED:

POS Sales Data: Product, Weekly Sales, Average Price, Region

Macroeconomic Features: Inflation, Supply Chain, **Distribution unique to Unilever**

Number of Categories	19
Number of Regions	226
Total number of Products	1707
Total number of rows in Sales data	90 million

CURRENT METHOD:

 $Elasticity = \frac{log_{10}(1 + \Delta\%UnitChg)}{log_{10}(1 + \Delta\%PriceChg)}$

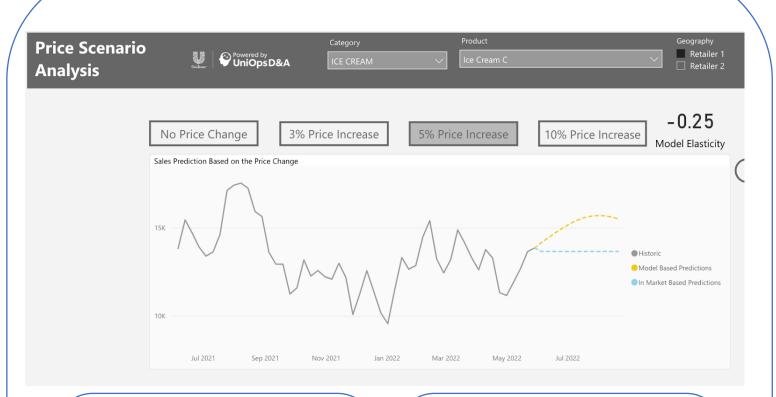
Used For:

- Estimating the effects of price changes.
- Categorizing Unilever's products.

Issues:

- **Creates estimate from** two points in the data.
- Does not consider seasonality and trend.
- Does not account for macroeconomic factors.

Business Ready PowerBI Dashboard

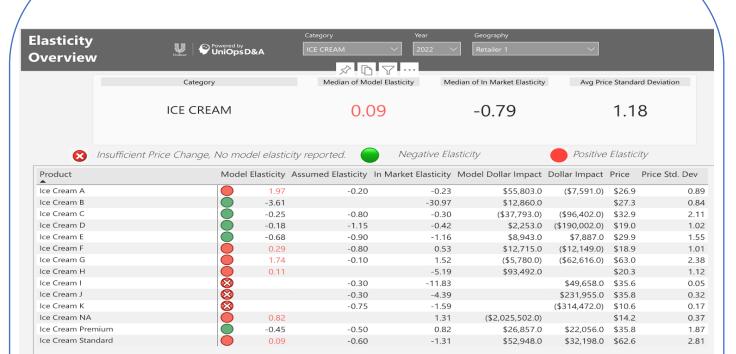


SHOWS

How each signal contributes to a product's sales

IMPACT

Understanding of product behavior and reactions



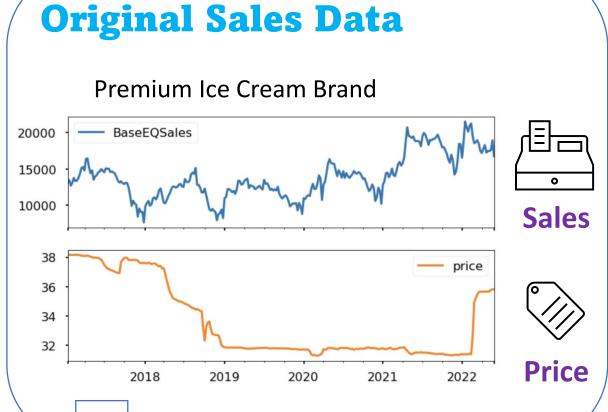
SHOWS

Expected sales for a given price increase

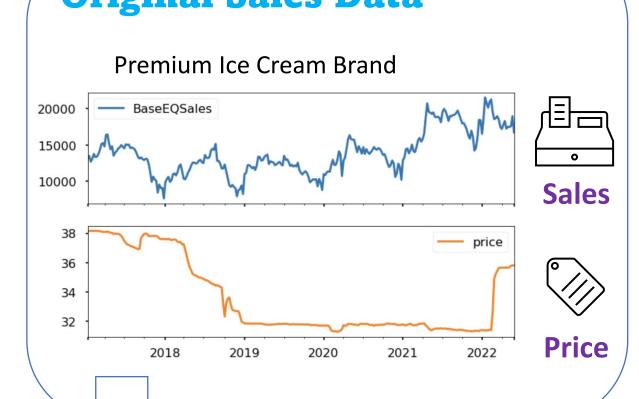
IMPACT

Dynamic and more accurate predictions

SHOWS


Elasticity values and metrics for all products

IMPACT


Category outlook and sorting of products tiers

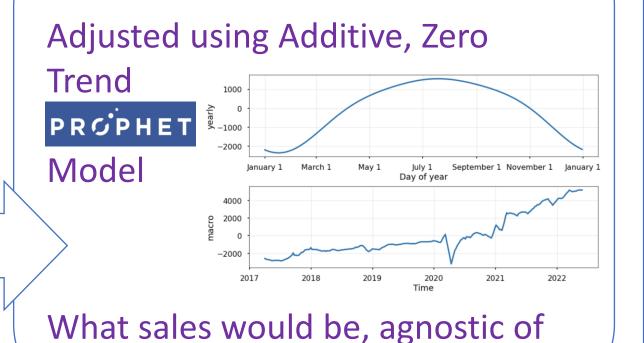
STEP 1:

GOAL: Remove except price model with seasonality and external regressors

impact of all features **HOW:** Using Prophet

Seasonality

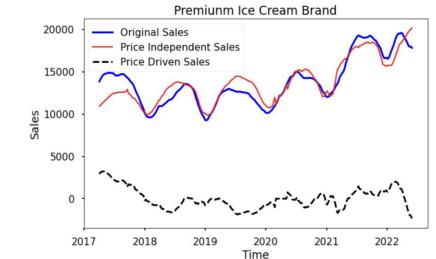
3rd order Fourier Series

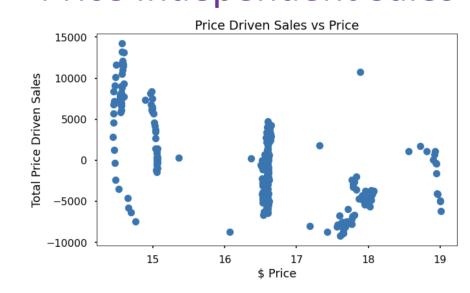

Macroeconomics

Personal Consumption Expenditures

Distribution and Supply Chain

Internal Unilever Data


Price Independent Sales



Price Independent Sales

Price Driven Sales

Calculated as: Original Sales – Price Independent Sales

Elasticity Coefficients

YEAR	MODEL ELASTICITY	PRED. SALES	ACTUAL SALES	DOLLAR IMPACT
2022	- 0.463	-22%	-12%	\$13862
2021	No Price Change	None	+24%	None

PRODUCT (Error measured as	RMSE	RMSE
Sales quantity)	STEP 1	STEP 2
Premium Ice Cream Product	15498	8811
Standard Ice Cream Product	27869	12027
Non-Dairy Ice Cream Product	4121	2334
Premium Non-Diary Ice Cream	640	370
CATEGORY AVERAGE	11350	5421

STEP 2:

GOAL: Use price to explain the remaining variation in sales **HOW:** Linear regression, shifting 52-week window

STAKEHOLDERS

price

We would like to thank all the members of the Unilever team for their feedback during this process. Special thanks to the Data and Analytics team: Syed Haider, Zeya Luo and Saloni Mishra. The Pricing team: Marc Becker and Brett Griswold. And the project leads: Ansu Kurian and Matt Algar.

NEXT STEPS

Implemented Model in Cloud to update automatically ぐく

Follow up on Business team after series of price changes.

CITATIONS

(2010). The impact of food prices on consumption: A systematic review of research on the price elasticity of demand for food. [Chindarkar and Goyal, 2019] Chindarkar, N. and Goyal, N. (2019). One price doesn't fit all: An examination of heterogeneity in price elasticity of residential electricity in india. Energy Economics, 81:765–778. [Jawad et al., 2018] Jawad, M., Lee, J. T., Glantz, S., and Millett, C. (2018) Price elasticity of demand of non-cigarette tobacco products: [Taylor and Letham, 2018] Taylor, S. J. and Letham, B. (2018). Forecasting at Scale. The American Statistician, 72(1):37–45 [Pendzialek et al., 2016] Pendzialek, J. B., Simic, D., and Stock, S. (2016). Differences in price elasticities of demand for health insurance